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(a) Original model (b) Simplified model after one 
iteration 

(c) Simplified model after several 
iterations 

Figure 1. Point-rendering results of multiresolution point set surfaces 

 

Abstract 
We have developed a new algorithm that addresses the two major issues that are critical for the use of point-based 
rendering in real-world applications: rendering performance and rendering quality. The proposed algorithm 
improves rendering performance by reducing the number of points to be rendered. We generated points with 
different sizes in order to improve the quality of the point-splatting-type rendering. In this paper, we propose a 
feature-preserved simplification algorithm for point-sampled surfaces that generates models with different levels of 
details. The proposed method automatically balances the sampling density and point sizes. Our algorithm iteratively 
reduces the number of points using a bilateral filtering algorithm. We validate our method on the basis of the 
rendering results of different models with different resolutions. 
Keywords: Point-based graphics, Level of details 

 
概要 

本論文では，ポイントベースレンダリングにとって重要であるレンダリングのパフォーマンスと品質を
改善する新しいアルゴリズムを提案する．提案する手法では，ポイントの数を減らすことによりレンダ
リングパフォーマンス，また，異なったサイズのポイントを用いることによりレンダリングの品質も改
善することが可能である．具体的には，バイラテラルフィルタを用いて，特徴点を保持しながらポイン
トの数を減らす．この手法により，ポイントの大きさとポイントの分布が自動的にバランスをとるため
レンダリングの品質が改善される．また，レベル・オブ・ディテールによる異なる詳細度レベルに対応
するモデルの生成も可能である。最後に，いくつかの実験例により本手法の有効性を示す． 
キーワード：ポイントベースのグラフィクス，レベル・オブ・ディテール 
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1. Introduction 

Three-dimensional (3D) points are the simplest and 
most fundamental geometry-defining primitives. They 
are a popular computational tool in particle simulation 
and in the 3D scanning industry. Points are popular in 
procedural modeling because the lack of connectivity 
makes it easier to deal with dynamically changing 
objects. Points have long been considered to be 
modeling tools; however, point-based rendering (PBR) 
has received increased attention recently because of the 
widespread use of 3D scanning technology and 
advanced physical modeling. PBR is an attractive 
option because of its conceptual simplicity and 
generality. One apparent drawback of PBR, in 
comparison with polygonal representations, is that in 
order to sketch a simple 3D shape, we are required to 
use millions of sample points rather than a few 
polygonal faces. Therefore, it can be concluded that the 
complexity of PBR is independent of the shape 
simplicity. As a consequence, studies on PBR primarily 
aim at efficient and flexible handling of a large 3D 
point cloud. One of the key challenges in point 
rendering is the reduction of the complexity of such 
large data sets. In this paper, we propose a 
feature-preserved simplification algorithm for 
point-sampled surfaces that generates models with 
different levels of details (LODs). This research is an 
extension of our previous work [Sosorbaram et al., 
2009]. We have added a more detailed description and 
provided more result images. Multiresolution point set 
surfaces are generated by carrying out the following 
steps: First, the algorithm finds the k-nearest neighbors 
for a selected point. Second, the variations in normal 
vectors within the k-nearest neighborhood points are 
summarized. Third, the points are decimated using a 
bilateral filtering operator, and finally, the size of a 
new point is calculated. 

Our contributions can be summarized as follows: 
1) We used a hierarchical volumetric partitioning 

method in order to accelerate the k-nearest neighbor 
search process. Two or three volume grids were 
used for precise partitioning. One volume grid was 
used for the approximate partitioning, and the other 
volume grids were used for fine grade partitioning. 
In order to partition the 3D space into (N × N × N) 
partitioning, we used two volume grids with ( N ×

N × N ) voxels. This hierarchical volumetric 
partitioning enabled us to reduce memory 
consumption while improving the partitioning 
resolution. Searching for the neighborhood points 
in the nearest voxels significantly improved the 
performance of the k-nearest neighborhood search 
algorithm. The advantages of our hierarchical 
volumetric partitioning algorithm include the 
following: 

 Performance. Our algorithm uses a hierarchical 
hashing technique. Previous space partitioning 
methods mainly use binary space partitioning 
trees (BSP trees), bounding volume hierarchies 
(BVHs), and octree structures. BVHs, BSP trees, 
and octree structures all use some sort of tree as 
their basic data structure. Hash tables are faster 
than tree structures in accessing data. Searching 
a hash table is easy and extremely fast: a typical 
search carried out using a hash function takes 
O(1) time. 

 Memory efficiency. Our algorithm uses a 
relatively small amount of extra memory for 
high-resolution partitioning. For example: in 
order to partition the 3D space into 106 × 106 × 
106 voxels, the algorithm uses two hash tables 
with 103 × 103 × 103 voxels or three hash tables 
with 102 × 102 × 102 voxels. 

 Adaptation for non-uniformly distributed 
point sets. At each hierarchy level, the 
algorithm skips the empty voxels in order to 
adapt to the point distribution. 

2) The feature-preserved point set simplification 
operator uses the concept of bilateral filtering 
proposed by Tomasi and Manduchi [1998]. Our 
filtering operator takes the distance value, the 
variation coefficient, and the threshold value as the 
arguments in order to determine the point 
elimination criteria. If a point has a variation lower 
than the threshold value and if it is located close to 
the selected point, it is removed from the point set. 
The following reasons have inspired us to use 
bilateral filtering for the simplification of point set 
surfaces: 

 Feature-preserved simplification. Recently, 
the bilateral filtering algorithm has been 
successfully used in many feature-preserved 
operations in computer graphics, e.g., image 
processing and high dynamic range (HDR) 
techniques. In the feature-preserved 
simplification of point sets, we have to consider 
two important characteristics of local surfaces 
the geometrical closeness of neighborhood 
points and the surface curvature near the 
selected point. The bilateral filtering algorithm 
was chosen as a well-suited filtering operator to 
combine these two important features.  

 Conceptual simplicity. Bilateral filtering 
produces a doubly weighted local average. The 
calculation of two Gaussian weighted functions 
is simple and fast. Several very fast versions of 
bilateral operators require O(1) time to run. 

 Suitability for point set processing. The 
proposed algorithm operates directly on point 
sets. Most other point surface simplification 
algorithms reconstruct the local surface (MLS 
and progressive mesh) or graphs (Voronoi 
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diagram and point repulsion) to evaluate the 
simplification criteria. 

 Iterative behavior. It can iteratively produce 
the multi-resolution models in the form of levels 
of details (LODs). 

3) The generation of points with different sizes 
improves the quality of rendering while reducing 
the number of points. After removing the points, the 
algorithm calculates the position of a new point and 
calculates its size. Its position is calculated by 
locating the center of the removed points. The size 
of a new point is computed by determining the 
longest distance between the position of the new 
point and the positions of the removed points. Our 
contributions in generating the point model with 
multi-sized splats are as follows: 

 We describe the algorithm to define the position 
and the size of new points. Although some 
research works demonstrate the result images 
with multi-sized points [Pauly et al., 2002], they 
do not provide a detailed algorithm for defining 
the position and the size of new points. 

 Our algorithm generates not only the 
multi-resolution LODs but also the multi-sized 
points within the LOD models. 

Our method can be used in various applications such as 
LOD-based rendering and feature extraction in 
point-based models. Three resultant images are shown 
in Figure 1. These demonstrate that our algorithm is 
useful for the visualization of point set surfaces with 
different LODs. 

2. Related Works 

The proposed algorithm builds on a long sequence of 
earlier studies, which we briefly review here. 
Point-Based Rendering: Points were first considered 
to be rendering primitives in the work of Levoy and 
Whitted [1985]; subsequently, they were rediscovered 
by Grossman and Dally [1998] and then improved with 
the introduction of surfels in the study by Pfister et al. 
[2000]. Recently, several researchers have introduced 
high-quality techniques using point splatting, 
differential points, and hardware acceleration. [Botsch 
et al., 2002; Botsch and Kobbelt, 2003; Kalaiah and 
Varshney, 2001]. 

Level of Details (LOD): There have been a number of 
approaches to speed up the rendering of complex 
models. One approach uses the LOD method. An 
automatic method for reducing the geometric 
complexity of surfaces by triangle decimation was first 
developed by Hoppe [1996]. The cost of inserting and 
deleting points in point-based methods is less than that 
in the case of polygon-based methods because of the 
absence of connectivity information in the point 

models. Therefore, LOD methods have been 
successfully used in PBR. Point rendering systems 
such as QSplat [Rusinkiewicz and Levoy, 2000] and 
Surfel [Pfister et al., 2000] have introduced a 
hierarchical structure like LOD. Further, research using 
LOD techniques in point rendering has resulted in 
efficient LOD representations and has considered 
issues such as the combination of point and triangle 
primitives in an LOD-based rendering approach 
[Cohen et al., 2001; Chen and Nguyen, 2001; Dey and 
Hudson, 2001]. The challenge in the generation of an 
efficient LOD representation lies in the efficient 
processing of large point sample data sets [Boubekeur, 
2005]. Our algorithm differs from these algorithms in 
that it generates not only the multiresolution LODs but 
also the multi-sized points within the LOD models. 

Point Surface Simplification: The works that relate 
the most to our methods are point simplification 
methods. The simplification techniques used in some 
of the most significant related works are summarized 
in Table 1. 

The proposed algorithm differs from the algorithms 
listed in Table 1 in the following ways: 
 We use a bilateral filtering algorithm to evaluate 

the point decimation criteria. This results in the 
advantages of bilateral filtering mentioned earlier 
in the introduction section. 

 The proposed neighborhood searching, bilateral 
filtering, point elimination, and new point 
generation algorithms are straightforward and 
easy to implement. Many of the related works deal 
with additional processing to simplify the model 
such as mesh reconstruction [Alexa et al., 2001, 
Hoppe 1996, Rossignac and Borrel 1993, Jianhua 
Wu et al., 2005, Fleishman et al., 2003], solving a 
system of linear equations [Turk 1992], and the 
construction of additional structures [Moenning 
and Dodgson 2003]. 

 In the proposed algorithm, the surface variation is 
calculated by evaluating the weighted differences 
of neighboring normal vectors, which is a more 
intuitive approach than methods based on 
principal component analysis [Pauly et al., 2002, 
Jianhua Wu et al., 2005]. 

 A direct comparison of performance and quality of 
results with previously published works is difficult 
because of the uncommon computational 
environments, differences among the point models, 
and distinctive rendering tools used for producing 
the resulting images. We provide different 
rendered images to evaluate the basic 
characteristics of our simplification algorithm. 
Our algorithm works in linear time. The 
performance of each step is shown in Table 2. The 
graph of the performance of other algorithms 
shows [Pauly et al., 2002] logarithmic or 
quadratic time. On the basis of the available 
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information, we can conclude that our algorithm is 
faster than the other algorithms. 

Table 1. Works related to point surface simplification 
Related Work Simplification Method 

Efficient simplification of 
point-sampled surfaces. 
[Pauly et al., 2002] 

Conversion of various
mesh simplification 
techniques into point 
simplification 

Point set surfaces. 
[Alexa et al., 2001] 

Error metric for moving
least square (MLS)-based 
local surfaces 

Point cloud representation 
[Linsen 2001] 

Entropy evaluation

Multiresolution 3D 
approximations for 
rendering complex scenes. 
[Rossignac and Borrel 
1993] 

Clustering by region
growing 

Progressive meshes. 
[Hoppe 1996] 

Iterative edge collapsing

Re-tiling polygonal 
surfaces. [Turk 1992] 

Particle relaxation

A new point cloud 
simplification algorithm. 
[Moenning and Dodgson 
2003] 

Voronoi diagram

Progressive splatting 
[Jianhua Wu et al., 2005] 

Greedy algorithm PCA

Progressive point set 
surfaces. [Fleishman et al., 
2003] 

MLS based refinement 
operator 

 

Nearest Neighbor Search: Point simplification 
algorithms are heavily dependent on the use of 
neighborhoods of points. A considerable amount of 
effort has gone into the development of an efficient 
nearest neighbor search method [Jagan et al., 2007]. 
Point neighborhoods are used for computing 
variations and point decimation and for removing 
noise. On the basis of the previously proposed 
hierarchical bucket sorting method [Zorig et al., 
2007], we used a hierarchical volumetric partitioning 
method to accelerate the k-nearest neighbor search 
algorithm. The advantages of the hierarchical 
volumetric partitioning method have been described 
in the introduction part of this paper. 

3. Overview of New Multiresolution Point 
Generation Algorithm 

3.1 Formulation of Problems and Solution 

Problem Formulation: Let S be a surface defined by a 
point cloud P. We assume that the discrete point 
samples P satisfy the necessary sampling criteria such 
as the Nyquist condition, and that they completely 
define the surface geometry and its features. 
Furthermore, it is assumed that each point is associated 
with attributes needed for point rendering such as the 
normal, size, and color. Our algorithm aims to generate 

several point sets with different resolutions. The 
requirements for a multiresolution surface generation 
algorithm are as follows: 
 Newly generated approximations should resemble 

the original surface as closely as possible; 
 The surface generation process should be 

controllable through configuration parameters in 
order to achieve the best results; and 

 The performance of the algorithm should be fairly 
fast, since it will be necessary to apply the 
algorithm to interactive simulations involving 
dynamically changing point models. 

Proposed Solution: With regard to the proposed 
algorithm, we focused on two important aspects of 
point elimination: the importance of a point for model 
description and the existence of the nearest points that 
can cover the removed point on the surface. We 
selected bilateral filtering as the most suitable solution 
for the feature-preserved simplification of point 
models when the normal of each point was predefined. 
In addition to the feature-preserved point elimination, 
we attempted to find a new algorithm for the 
k-neighborhood search algorithm. We applied a 
two-step hierarchical voxelization in order to 
accelerate the neighborhood search algorithm. 

3.2 Algorithm Details 

3.2.1 Steps of Proposed Algorithm 

The multiresolution point set surfaces are generated by 
following the steps shown in Figure 2. Initially, the 
algorithm reads the original point set, analyzes the data 
set, determines the maximum and minimum sizes of 
points, and calculates the size of the modeled object in 
three dimensions. The initial values of the configuration 
parameters are assigned according to the information 
derived from the data analysis. Then, the algorithm 
iteratively generates simplified models. Each simplified 
model approximates the model of the previous iteration.  
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Figure 2. Algorithm steps. 
 

Throughout an iteration, the algorithm reads all points 
of the existing simplified model several times and 
performs point decimation. The point decimation 
operator performs five tasks: it locates the nearest 
points, calculates the variations, evaluates the point 
decimation conditions, removes points, and generates a 
new replacement point. Each step in the iteration takes 
O(n) time to perform. 

3.2.2 Nearest Neighbor Searching Algorithm 

The proposed algorithm makes considerable use of 
the neighborhoods of points. Upon analyzing 
different partitioning methods, we found that the 
two-step hierarchical voxelization was more effective 
than the other partitioning methods. In order to 
develop high-resolution voxelization in linear time, 
we used two volume grids with dimensions N × N × 
N. One of the volume grids was used for first-level 
approximate voxelization, and the other was used for 
accurate voxelization. 
The size of the volume grid was defined by using the 
minimum size of the considered points, as shown in the 
following equation (Eq. 1): 
  

 
 
where Xmax, Ymax, Zmax and Xmin, Ymin, Zmin are the 
maximum and minimum coordinates in the X, Y, and Z 
directions, respectively. S is the minimum size of the 
considered points; N is one dimension of the volume 
grid with dimensions N × N × N. 
 
 

 

Figure 3. Outline of two step hierarchical voxelization 
 

 
Figure 3 shows a high-level overview of our 
hierarchical voxelization procedure. First, the 
algorithm traverses all points and distributes them in 
the first-level approximation volume grid. The points 
are assigned to voxels by using a simple calculation 
that is based on the position of the points. Then, the 
non-empty voxels of the approximated bucket list are 
distributed into the accurate volume grids. A hash 
function for accurate voxelization works in a manner 
similar to the first-level voxelization. Only the range 
values of the voxels need to be changed. 

 

 

Figure 4. Normal vectors for selected point and nearest 
point 

The main advantages of our voxelization algorithm are 
as follows: 
 It works in linear time O(n). The algorithm reads 

the entire point set twice to produce the required 
voxels in order to find the nearest neighborhood 
points. During accurate voxelization, the algorithm 
skips all empty voxels of the approximate volume 
grid. 

 It generates high-quality voxelization using a small 
amount of memory. For example, in order to 
generate a large voxelization of dimension 10,000 
× 10,000 × 10,000, we required two volume grids 
of dimensions 100 × 100 × 100; one volume grid 
was used for the first-level approximation, and the 
other volume grid was used for accurate 
voxelization. 

3.2.3 Calculation of Variations 

The variation in points is calculated on the basis of the 
differences in normal vectors. We define the variation 
of point (δi) as the average of the dot products of the 
selected point and the k-nearest neighborhood points; δi 
is calculated on the basis of the following equation (Eq. 
2): 

1
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3.2.4 Evaluation of Point Decimation Criteria 

We determine the points that need to be removed by 
using the bilateral filtering operator. The evaluation 
function determines the elimination criteria of a 
selected point by taking into account the variation in 
and the distance of the neighborhood points. The point 
elimination criteria i

eC  are defined by the following 
equation (Eq. 3): 
 
 
 
 
where Wi is the weight function of a selected point and 
ε is the threshold value. The threshold value must be 0 
< ε < 1. The selected point has a high elimination 
probability if the point elimination criteria are equal to 
1. We calculate Wi as the bilateral function by using the 
following equation (Eq. 4): 
 
 
 
 
 
 
where Wr and Wδ are the distance and variation based 
weight functions, respectively. They are calculated by 
using the following equations (Eqs. 5 and 6): 

ijd
rW e α− ⋅=
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i jeW i j

0

β δ δ
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where dij is the distance between the point i and the 
neighborhood point j; δi and δj are the variations in the 
selected point i and the neighborhood point j, 
respectively; β is the multiresolution-level-based 
coefficient; and Ψ is the threshold parameter for 
variation. 
 
 

Figure 5. Illustration of point elimination criteria 

Figure 5 illustrates the point elimination criteria. The 
point is removed when the neighbors are near and the 
normal vectors are in approximately the same direction, 
as shown in Figure 5(a). In other conditions such as 
when the neighbors are far (Figure 5(b) and 5(d)) or 
normal vectors are directed into different directions 
(Figure 5(c) and 5(d)), the point will not be removed. 

3.2.5 Removal of Points and Generation of New 
Point 

The generation of points with different sizes improves 
the quality of rendering, while reducing the number of 
points. After removing the points, the algorithm 
determines the position of a new point and computes its 
size. The position of new point pnew is determined by 
locating the center of the removed points (Eq. 7). 
 
 
 
 
 
 
Here, xi, yi, zi are the coordinates of the removed points 
and m is number of the removed points. The size of a 
new point is defined by the following equation (Eq. 8): 
 

rnew = max( dj + rj ) 
 
Here, r is the size of the new point, rj is the size of the 
neighboring point, and dij is the distance between the 
new point and the neighboring points. 
Equation 8 demonstrates that the size of a new point is 
computed by finding the greatest distance between the 
position of the new point and the positions of the 
removed points, as shown in Figure 6. 
 

 

 
Figure 6. Calculation of size of new point 

 

4. Experimental Results  

The algorithms introduced in this paper were 
implemented in C++ and the CG shading language. 
Images were rendered on a computer with a 2.4 GHz 
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Intel Core 2Quad Q6600 processor, 2GB RAM, and an 
NVIDIA GeForce 8600GT graphics card. We used 
OpenGL and its extensions for the implementation of 
the vertex texture, multi-target rendering, and the 
Shader 3.0 model of the programmable vertex and 
fragment processing. In order to demonstrate the 
potential of our algorithm, we selected several simple 
polygon models. For the experiment, we used the 
Stanford Bunny, Female, Male, Beethoven, Ball-Joint, 
and Dragon polygon models available from the public 
domain. Point models were generated by taking the 
vertices and the normal vectors of polygon models. 
Three of the result images illustrating the basic 
features of our algorithm are shown in Figure 1. 
Through the following experiments, we demonstrated 
different aspects of the multiresolution generation 
algorithm. 

LOD and Point Models. Figure 8 shows the results 
obtained by changing point models on the basis of the 
LODs. We used simple models as models that are 
located far from the view point. The images in the first 
row show the point distributions of models in each 
LOD. The other images illustrate the LOD in the case 
of different models.  

 
Table 2. Performance of multiresolution point set 

generation algorithm 
Model Dragon Bunny Female 
Number of Points 437,645 139,122 302,948 
Neighborhood 
Search (ms) 

110 34 76 

Calculation of 
Variations (ms) 

82 26 57 

Evaluation of Point 
Elimination (ms) 

96 31 66 

Removal of Points 
and Generation of 
New Point (ms) 

135 43 93 

Total (ms) 423  
(2.3 fps)

133 
(7.5 fps) 

292 
(3.4 fps)

Weight Functions for Feature-Preserved 
Simplification. Variation coefficient and distance are 
the two main components of the bilateral elimination 
operator. In Figure 9(a), we show the effect of weight 
functions in the case of feature-preserved simplification. 
As shown in Figure 9(b), the number of removable 
points is inversely proportional to the threshold ε and 
parameter β. In other words, when the value of ε is 
decreased, the number of removable points will 
increase. 

Multi-sized Splats. The effect of multisized splats on 
the rendering quality is shown in Figure 10. 

Other Applications and Simplified Models. The 
proposed algorithm can be used in various applications 
such as LOD-based rendering and feature extraction in 

point-based models. We used the multiresolution 
models in algorithms other than LOD. We applied our 
algorithm to the feature-line extraction algorithm and to 
the generation of models for laser projection (Figure 
11). 
The performance of our algorithm is summarized in 
Table 2. We evaluated the performance by processing 
three different types of point clouds. 

 
Figure 7. Execution time for different k-nearest values 

 
Overall, our algorithm works in linear time. Figure 7 
shows the graph of the computation time for different k 
values for neighbor selection. 

5. Conclusion and Future Works 

We have presented a new multiresolution point model 
generation algorithm. This algorithm works in linear 
time and requires a small amount of memory. The 
experimental results reveal that the algorithm can 
generate several feature-preserved simplified models, 
which can be used in rendering LOD, feature-line 
extraction, and laser-projection systems. Multi-sized 
splats contributed to the improvement in the quality of 
the model. In the future, we intend to make the 
following improvements to the algorithm: 

 Optimization of the evaluation operator for 
point elimination. Improve the quality 
according to an error metrics [Jianhua Wu et al., 
2005]   

 Improvement in algorithm for using of 
progressive multi-resolution point surfaces by 
applying efficient data structures [Dachsbacher 
et al., 2003], [Gobbetty and Marton 2004] and 
compression schemes. [Fleishman et al., 2003] 

 Implementation of our algorithm on a graphics 
processing unit (GPU) 

 Application of our algorithm to volumetric 
point clouds 
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LOD and Point Models
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n = 99,423 n = 66,740 n = 41,769 

 
 

 
n = 67,827 n = 46,874 n = 35,144 

 

  
n = 256,459 n = 193,447 n = 128,268 

 
Figure 8. LOD models (α = 0.1, Ψ = 0.01, β = 0.9) 
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 Ψ = 0.01 (iter = 1) Ψ = 0.02 (iter = 2) Ψ = 0.03 (iter = 3) 

β = 0.1 

 

   

 n = 45,906 n = 27,825 n = 19,997 

β = 0.5 

 

   

 n = 59,686 n = 33,753 n = 22,906 

β = 0.9 

 

   
 n = 78,903 n = 56,164 n = 39,554 
    

Figure 9(a). Feature-preserved simplification with different parameters β and Ψ (α = 0.1,ε = 0.99) 
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 ε = 0.1 ε = 0.5 ε = 0.9 

β = 0.1 

 

  

n = 102,233 n = 106,278 n = 173,867 

β = 0.5 

 

  

n = 106,278 n = 154,696 n = 236,751 

β = 0.9 

 

  

n = 112,016 n = 236,758 n = 263,486 
    

Figure 9(b). Simulation results with different parameters β and ε   (α = 0.1, Ψ = 0.01) 
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(a) with same size of points (b) with different sizes of points 

 

Figure 10. Effect of multisized splats (n = 184,312) 
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extraction 

 

 

Laser 

projection  
  

 

 
Figure 11. Feature-line extraction and models for laser projection 

 


