
芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

140

 Simplification of Point Set Surfaces using Bilateral Filter
and Multi-Sized Splats

Batchimeg SOSORBARAM Tadahiro FUJIMOTO Norishige CHIBA

Iwate University
E-mail: {chimeg@cg., fujimoto@, nchiba@}cis.iwate-u.ac.jp

バイラテラルフィルタと多重サイズスプラットによる
ポイント表現された曲面の簡易化手法

ソソラバラム バトゥチメグ 藤本忠博 千葉則茂

岩手大学

(a) Original model (b) Simplified model after one
iteration

(c) Simplified model after several
iterations

Figure 1. Point-rendering results of multiresolution point set surfaces

Abstract
We have developed a new algorithm that addresses the two major issues that are critical for the use of point-based
rendering in real-world applications: rendering performance and rendering quality. The proposed algorithm
improves rendering performance by reducing the number of points to be rendered. We generated points with
different sizes in order to improve the quality of the point-splatting-type rendering. In this paper, we propose a
feature-preserved simplification algorithm for point-sampled surfaces that generates models with different levels of
details. The proposed method automatically balances the sampling density and point sizes. Our algorithm iteratively
reduces the number of points using a bilateral filtering algorithm. We validate our method on the basis of the
rendering results of different models with different resolutions.
Keywords: Point-based graphics, Level of details

概要

本論文では，ポイントベースレンダリングにとって重要であるレンダリングのパフォーマンスと品質を
改善する新しいアルゴリズムを提案する．提案する手法では，ポイントの数を減らすことによりレンダ
リングパフォーマンス，また，異なったサイズのポイントを用いることによりレンダリングの品質も改
善することが可能である．具体的には，バイラテラルフィルタを用いて，特徴点を保持しながらポイン
トの数を減らす．この手法により，ポイントの大きさとポイントの分布が自動的にバランスをとるため
レンダリングの品質が改善される．また，レベル・オブ・ディテールによる異なる詳細度レベルに対応
するモデルの生成も可能である。最後に，いくつかの実験例により本手法の有効性を示す．
キーワード：ポイントベースのグラフィクス，レベル・オブ・ディテール

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

141

1. Introduction

Three-dimensional (3D) points are the simplest and
most fundamental geometry-defining primitives. They
are a popular computational tool in particle simulation
and in the 3D scanning industry. Points are popular in
procedural modeling because the lack of connectivity
makes it easier to deal with dynamically changing
objects. Points have long been considered to be
modeling tools; however, point-based rendering (PBR)
has received increased attention recently because of the
widespread use of 3D scanning technology and
advanced physical modeling. PBR is an attractive
option because of its conceptual simplicity and
generality. One apparent drawback of PBR, in
comparison with polygonal representations, is that in
order to sketch a simple 3D shape, we are required to
use millions of sample points rather than a few
polygonal faces. Therefore, it can be concluded that the
complexity of PBR is independent of the shape
simplicity. As a consequence, studies on PBR primarily
aim at efficient and flexible handling of a large 3D
point cloud. One of the key challenges in point
rendering is the reduction of the complexity of such
large data sets. In this paper, we propose a
feature-preserved simplification algorithm for
point-sampled surfaces that generates models with
different levels of details (LODs). This research is an
extension of our previous work [Sosorbaram et al.,
2009]. We have added a more detailed description and
provided more result images. Multiresolution point set
surfaces are generated by carrying out the following
steps: First, the algorithm finds the k-nearest neighbors
for a selected point. Second, the variations in normal
vectors within the k-nearest neighborhood points are
summarized. Third, the points are decimated using a
bilateral filtering operator, and finally, the size of a
new point is calculated.

Our contributions can be summarized as follows:
1) We used a hierarchical volumetric partitioning

method in order to accelerate the k-nearest neighbor
search process. Two or three volume grids were
used for precise partitioning. One volume grid was
used for the approximate partitioning, and the other
volume grids were used for fine grade partitioning.
In order to partition the 3D space into (N × N × N)
partitioning, we used two volume grids with (N ×

N × N) voxels. This hierarchical volumetric
partitioning enabled us to reduce memory
consumption while improving the partitioning
resolution. Searching for the neighborhood points
in the nearest voxels significantly improved the
performance of the k-nearest neighborhood search
algorithm. The advantages of our hierarchical
volumetric partitioning algorithm include the
following:

 Performance. Our algorithm uses a hierarchical
hashing technique. Previous space partitioning
methods mainly use binary space partitioning
trees (BSP trees), bounding volume hierarchies
(BVHs), and octree structures. BVHs, BSP trees,
and octree structures all use some sort of tree as
their basic data structure. Hash tables are faster
than tree structures in accessing data. Searching
a hash table is easy and extremely fast: a typical
search carried out using a hash function takes
O(1) time.

 Memory efficiency. Our algorithm uses a
relatively small amount of extra memory for
high-resolution partitioning. For example: in
order to partition the 3D space into 106 × 106 ×
106 voxels, the algorithm uses two hash tables
with 103 × 103 × 103 voxels or three hash tables
with 102 × 102 × 102 voxels.

 Adaptation for non-uniformly distributed
point sets. At each hierarchy level, the
algorithm skips the empty voxels in order to
adapt to the point distribution.

2) The feature-preserved point set simplification
operator uses the concept of bilateral filtering
proposed by Tomasi and Manduchi [1998]. Our
filtering operator takes the distance value, the
variation coefficient, and the threshold value as the
arguments in order to determine the point
elimination criteria. If a point has a variation lower
than the threshold value and if it is located close to
the selected point, it is removed from the point set.
The following reasons have inspired us to use
bilateral filtering for the simplification of point set
surfaces:

 Feature-preserved simplification. Recently,
the bilateral filtering algorithm has been
successfully used in many feature-preserved
operations in computer graphics, e.g., image
processing and high dynamic range (HDR)
techniques. In the feature-preserved
simplification of point sets, we have to consider
two important characteristics of local surfaces
the geometrical closeness of neighborhood
points and the surface curvature near the
selected point. The bilateral filtering algorithm
was chosen as a well-suited filtering operator to
combine these two important features.

 Conceptual simplicity. Bilateral filtering
produces a doubly weighted local average. The
calculation of two Gaussian weighted functions
is simple and fast. Several very fast versions of
bilateral operators require O(1) time to run.

 Suitability for point set processing. The
proposed algorithm operates directly on point
sets. Most other point surface simplification
algorithms reconstruct the local surface (MLS
and progressive mesh) or graphs (Voronoi

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

142

diagram and point repulsion) to evaluate the
simplification criteria.

 Iterative behavior. It can iteratively produce
the multi-resolution models in the form of levels
of details (LODs).

3) The generation of points with different sizes
improves the quality of rendering while reducing
the number of points. After removing the points, the
algorithm calculates the position of a new point and
calculates its size. Its position is calculated by
locating the center of the removed points. The size
of a new point is computed by determining the
longest distance between the position of the new
point and the positions of the removed points. Our
contributions in generating the point model with
multi-sized splats are as follows:

 We describe the algorithm to define the position
and the size of new points. Although some
research works demonstrate the result images
with multi-sized points [Pauly et al., 2002], they
do not provide a detailed algorithm for defining
the position and the size of new points.

 Our algorithm generates not only the
multi-resolution LODs but also the multi-sized
points within the LOD models.

Our method can be used in various applications such as
LOD-based rendering and feature extraction in
point-based models. Three resultant images are shown
in Figure 1. These demonstrate that our algorithm is
useful for the visualization of point set surfaces with
different LODs.

2. Related Works

The proposed algorithm builds on a long sequence of
earlier studies, which we briefly review here.
Point-Based Rendering: Points were first considered
to be rendering primitives in the work of Levoy and
Whitted [1985]; subsequently, they were rediscovered
by Grossman and Dally [1998] and then improved with
the introduction of surfels in the study by Pfister et al.
[2000]. Recently, several researchers have introduced
high-quality techniques using point splatting,
differential points, and hardware acceleration. [Botsch
et al., 2002; Botsch and Kobbelt, 2003; Kalaiah and
Varshney, 2001].

Level of Details (LOD): There have been a number of
approaches to speed up the rendering of complex
models. One approach uses the LOD method. An
automatic method for reducing the geometric
complexity of surfaces by triangle decimation was first
developed by Hoppe [1996]. The cost of inserting and
deleting points in point-based methods is less than that
in the case of polygon-based methods because of the
absence of connectivity information in the point

models. Therefore, LOD methods have been
successfully used in PBR. Point rendering systems
such as QSplat [Rusinkiewicz and Levoy, 2000] and
Surfel [Pfister et al., 2000] have introduced a
hierarchical structure like LOD. Further, research using
LOD techniques in point rendering has resulted in
efficient LOD representations and has considered
issues such as the combination of point and triangle
primitives in an LOD-based rendering approach
[Cohen et al., 2001; Chen and Nguyen, 2001; Dey and
Hudson, 2001]. The challenge in the generation of an
efficient LOD representation lies in the efficient
processing of large point sample data sets [Boubekeur,
2005]. Our algorithm differs from these algorithms in
that it generates not only the multiresolution LODs but
also the multi-sized points within the LOD models.

Point Surface Simplification: The works that relate
the most to our methods are point simplification
methods. The simplification techniques used in some
of the most significant related works are summarized
in Table 1.

The proposed algorithm differs from the algorithms
listed in Table 1 in the following ways:
 We use a bilateral filtering algorithm to evaluate

the point decimation criteria. This results in the
advantages of bilateral filtering mentioned earlier
in the introduction section.

 The proposed neighborhood searching, bilateral
filtering, point elimination, and new point
generation algorithms are straightforward and
easy to implement. Many of the related works deal
with additional processing to simplify the model
such as mesh reconstruction [Alexa et al., 2001,
Hoppe 1996, Rossignac and Borrel 1993, Jianhua
Wu et al., 2005, Fleishman et al., 2003], solving a
system of linear equations [Turk 1992], and the
construction of additional structures [Moenning
and Dodgson 2003].

 In the proposed algorithm, the surface variation is
calculated by evaluating the weighted differences
of neighboring normal vectors, which is a more
intuitive approach than methods based on
principal component analysis [Pauly et al., 2002,
Jianhua Wu et al., 2005].

 A direct comparison of performance and quality of
results with previously published works is difficult
because of the uncommon computational
environments, differences among the point models,
and distinctive rendering tools used for producing
the resulting images. We provide different
rendered images to evaluate the basic
characteristics of our simplification algorithm.
Our algorithm works in linear time. The
performance of each step is shown in Table 2. The
graph of the performance of other algorithms
shows [Pauly et al., 2002] logarithmic or
quadratic time. On the basis of the available

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

143

C
on

fig
ur

at
io

n
pa

ra
m

et
er

s

Iterations to
generate the

multiresolution
point set
surfaces

k, Svoxel

δ

W(r),
W(δ), ε

C

Read point set surfaces

Find k-nearest points

Calculate variations in
each point

Evaluate point
decimation conditions

Remove points and
define the replacement

point

Save model of point set
surface

information, we can conclude that our algorithm is
faster than the other algorithms.

Table 1. Works related to point surface simplification
Related Work Simplification Method

Efficient simplification of
point-sampled surfaces.
[Pauly et al., 2002]

Conversion of various
mesh simplification
techniques into point
simplification

Point set surfaces.
[Alexa et al., 2001]

Error metric for moving
least square (MLS)-based
local surfaces

Point cloud representation
[Linsen 2001]

Entropy evaluation

Multiresolution 3D
approximations for
rendering complex scenes.
[Rossignac and Borrel
1993]

Clustering by region
growing

Progressive meshes.
[Hoppe 1996]

Iterative edge collapsing

Re-tiling polygonal
surfaces. [Turk 1992]

Particle relaxation

A new point cloud
simplification algorithm.
[Moenning and Dodgson
2003]

Voronoi diagram

Progressive splatting
[Jianhua Wu et al., 2005]

Greedy algorithm PCA

Progressive point set
surfaces. [Fleishman et al.,
2003]

MLS based refinement
operator

Nearest Neighbor Search: Point simplification
algorithms are heavily dependent on the use of
neighborhoods of points. A considerable amount of
effort has gone into the development of an efficient
nearest neighbor search method [Jagan et al., 2007].
Point neighborhoods are used for computing
variations and point decimation and for removing
noise. On the basis of the previously proposed
hierarchical bucket sorting method [Zorig et al.,
2007], we used a hierarchical volumetric partitioning
method to accelerate the k-nearest neighbor search
algorithm. The advantages of the hierarchical
volumetric partitioning method have been described
in the introduction part of this paper.

3. Overview of New Multiresolution Point
Generation Algorithm

3.1 Formulation of Problems and Solution

Problem Formulation: Let S be a surface defined by a
point cloud P. We assume that the discrete point
samples P satisfy the necessary sampling criteria such
as the Nyquist condition, and that they completely
define the surface geometry and its features.
Furthermore, it is assumed that each point is associated
with attributes needed for point rendering such as the
normal, size, and color. Our algorithm aims to generate

several point sets with different resolutions. The
requirements for a multiresolution surface generation
algorithm are as follows:
 Newly generated approximations should resemble

the original surface as closely as possible;
 The surface generation process should be

controllable through configuration parameters in
order to achieve the best results; and

 The performance of the algorithm should be fairly
fast, since it will be necessary to apply the
algorithm to interactive simulations involving
dynamically changing point models.

Proposed Solution: With regard to the proposed
algorithm, we focused on two important aspects of
point elimination: the importance of a point for model
description and the existence of the nearest points that
can cover the removed point on the surface. We
selected bilateral filtering as the most suitable solution
for the feature-preserved simplification of point
models when the normal of each point was predefined.
In addition to the feature-preserved point elimination,
we attempted to find a new algorithm for the
k-neighborhood search algorithm. We applied a
two-step hierarchical voxelization in order to
accelerate the neighborhood search algorithm.

3.2 Algorithm Details

3.2.1 Steps of Proposed Algorithm

The multiresolution point set surfaces are generated by
following the steps shown in Figure 2. Initially, the
algorithm reads the original point set, analyzes the data
set, determines the maximum and minimum sizes of
points, and calculates the size of the modeled object in
three dimensions. The initial values of the configuration
parameters are assigned according to the information
derived from the data analysis. Then, the algorithm
iteratively generates simplified models. Each simplified
model approximates the model of the previous iteration.

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

144

Ni

Nj
pi

pj

Figure 2. Algorithm steps.

Throughout an iteration, the algorithm reads all points
of the existing simplified model several times and
performs point decimation. The point decimation
operator performs five tasks: it locates the nearest
points, calculates the variations, evaluates the point
decimation conditions, removes points, and generates a
new replacement point. Each step in the iteration takes
O(n) time to perform.

3.2.2 Nearest Neighbor Searching Algorithm

The proposed algorithm makes considerable use of
the neighborhoods of points. Upon analyzing
different partitioning methods, we found that the
two-step hierarchical voxelization was more effective
than the other partitioning methods. In order to
develop high-resolution voxelization in linear time,
we used two volume grids with dimensions N × N ×
N. One of the volume grids was used for first-level
approximate voxelization, and the other was used for
accurate voxelization.
The size of the volume grid was defined by using the
minimum size of the considered points, as shown in the
following equation (Eq. 1):

where Xmax, Ymax, Zmax and Xmin, Ymin, Zmin are the
maximum and minimum coordinates in the X, Y, and Z
directions, respectively. S is the minimum size of the
considered points; N is one dimension of the volume
grid with dimensions N × N × N.

Figure 3. Outline of two step hierarchical voxelization

Figure 3 shows a high-level overview of our
hierarchical voxelization procedure. First, the
algorithm traverses all points and distributes them in
the first-level approximation volume grid. The points
are assigned to voxels by using a simple calculation
that is based on the position of the points. Then, the
non-empty voxels of the approximated bucket list are
distributed into the accurate volume grids. A hash
function for accurate voxelization works in a manner
similar to the first-level voxelization. Only the range
values of the voxels need to be changed.

Figure 4. Normal vectors for selected point and nearest
point

The main advantages of our voxelization algorithm are
as follows:
 It works in linear time O(n). The algorithm reads

the entire point set twice to produce the required
voxels in order to find the nearest neighborhood
points. During accurate voxelization, the algorithm
skips all empty voxels of the approximate volume
grid.

 It generates high-quality voxelization using a small
amount of memory. For example, in order to
generate a large voxelization of dimension 10,000
× 10,000 × 10,000, we required two volume grids
of dimensions 100 × 100 × 100; one volume grid
was used for the first-level approximation, and the
other volume grid was used for accurate
voxelization.

3.2.3 Calculation of Variations

The variation in points is calculated on the basis of the
differences in normal vectors. We define the variation
of point (δi) as the average of the dot products of the
selected point and the k-nearest neighborhood points; δi
is calculated on the basis of the following equation (Eq.
2):

1
()

k

i j
j

i

N N

k
δ =

⋅
=

∑

where k is the number of neighborhood points and Ni
and Nj are the normals of the selected point i and the
neighborhood point j, respectively.

(2)
(1)

3 4

2 1

5

12

7 8 9 10

11

6

1 2 3 4

1

2

3

4

Approximate Voxelization

Accurate Voxelization

1 2 3 4
1
2
3
4

1 2 3 4
1
2
3
4

1 2 3 4
1
2
3
4

(2) (12)

. . .

(1) max min max min max min

min min min

max(, ,)X X Y Y Z ZN
S S S

− − −
=

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

145

p2

1

1

1

p5
p4

d4

p3
d5

d1 1

p1

0

0

0

0

0

pnew

1 d3

d2

r1

3.2.4 Evaluation of Point Decimation Criteria

We determine the points that need to be removed by
using the bilateral filtering operator. The evaluation
function determines the elimination criteria of a
selected point by taking into account the variation in
and the distance of the neighborhood points. The point
elimination criteria i

eC are defined by the following
equation (Eq. 3):

where Wi is the weight function of a selected point and
ε is the threshold value. The threshold value must be 0
< ε < 1. The selected point has a high elimination
probability if the point elimination criteria are equal to
1. We calculate Wi as the bilateral function by using the
following equation (Eq. 4):

where Wr and Wδ are the distance and variation based
weight functions, respectively. They are calculated by
using the following equations (Eqs. 5 and 6):

ijd
rW e α− ⋅=

(,)
i jeW i j

0

β δ δ

δ

− ⋅ −⎧⎪= ⎨
⎪⎩

where dij is the distance between the point i and the
neighborhood point j; δi and δj are the variations in the
selected point i and the neighborhood point j,
respectively; β is the multiresolution-level-based
coefficient; and Ψ is the threshold parameter for
variation.

Figure 5. Illustration of point elimination criteria

Figure 5 illustrates the point elimination criteria. The
point is removed when the neighbors are near and the
normal vectors are in approximately the same direction,
as shown in Figure 5(a). In other conditions such as
when the neighbors are far (Figure 5(b) and 5(d)) or
normal vectors are directed into different directions
(Figure 5(c) and 5(d)), the point will not be removed.

3.2.5 Removal of Points and Generation of New
Point

The generation of points with different sizes improves
the quality of rendering, while reducing the number of
points. After removing the points, the algorithm
determines the position of a new point and computes its
size. The position of new point pnew is determined by
locating the center of the removed points (Eq. 7).

Here, xi, yi, zi are the coordinates of the removed points
and m is number of the removed points. The size of a
new point is defined by the following equation (Eq. 8):

rnew = max(dj + rj)

Here, r is the size of the new point, rj is the size of the
neighboring point, and dij is the distance between the
new point and the neighboring points.
Equation 8 demonstrates that the size of a new point is
computed by finding the greatest distance between the
position of the new point and the positions of the
removed points, as shown in Figure 6.

Figure 6. Calculation of size of new point

4. Experimental Results

The algorithms introduced in this paper were
implemented in C++ and the CG shading language.
Images were rendered on a computer with a 2.4 GHz

ii
e

i

1; W
C

0 ; W
ε
ε

>⎧
= ⎨ ≤⎩

(3)

(4)
1

1

(,) (,)

(,)

k

r
j

i k

r
j

W i j W i j
W

W i j

δ
=

=

⋅
=

∑

∑

(8)

(5)

i j

i j

δ δ

δ δ

− ≤ Ψ

− > Ψ
(6)

1 1 1; ;

m m m

i i i
i i i

new

x y z
p

m m m
= = =

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
(7)

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

146

Intel Core 2Quad Q6600 processor, 2GB RAM, and an
NVIDIA GeForce 8600GT graphics card. We used
OpenGL and its extensions for the implementation of
the vertex texture, multi-target rendering, and the
Shader 3.0 model of the programmable vertex and
fragment processing. In order to demonstrate the
potential of our algorithm, we selected several simple
polygon models. For the experiment, we used the
Stanford Bunny, Female, Male, Beethoven, Ball-Joint,
and Dragon polygon models available from the public
domain. Point models were generated by taking the
vertices and the normal vectors of polygon models.
Three of the result images illustrating the basic
features of our algorithm are shown in Figure 1.
Through the following experiments, we demonstrated
different aspects of the multiresolution generation
algorithm.

LOD and Point Models. Figure 8 shows the results
obtained by changing point models on the basis of the
LODs. We used simple models as models that are
located far from the view point. The images in the first
row show the point distributions of models in each
LOD. The other images illustrate the LOD in the case
of different models.

Table 2. Performance of multiresolution point set

generation algorithm
Model Dragon Bunny Female
Number of Points 437,645 139,122 302,948
Neighborhood
Search (ms)

110 34 76

Calculation of
Variations (ms)

82 26 57

Evaluation of Point
Elimination (ms)

96 31 66

Removal of Points
and Generation of
New Point (ms)

135 43 93

Total (ms) 423
(2.3 fps)

133
(7.5 fps)

292
(3.4 fps)

Weight Functions for Feature-Preserved
Simplification. Variation coefficient and distance are
the two main components of the bilateral elimination
operator. In Figure 9(a), we show the effect of weight
functions in the case of feature-preserved simplification.
As shown in Figure 9(b), the number of removable
points is inversely proportional to the threshold ε and
parameter β. In other words, when the value of ε is
decreased, the number of removable points will
increase.

Multi-sized Splats. The effect of multisized splats on
the rendering quality is shown in Figure 10.

Other Applications and Simplified Models. The
proposed algorithm can be used in various applications
such as LOD-based rendering and feature extraction in

point-based models. We used the multiresolution
models in algorithms other than LOD. We applied our
algorithm to the feature-line extraction algorithm and to
the generation of models for laser projection (Figure
11).
The performance of our algorithm is summarized in
Table 2. We evaluated the performance by processing
three different types of point clouds.

Figure 7. Execution time for different k-nearest values

Overall, our algorithm works in linear time. Figure 7
shows the graph of the computation time for different k
values for neighbor selection.

5. Conclusion and Future Works

We have presented a new multiresolution point model
generation algorithm. This algorithm works in linear
time and requires a small amount of memory. The
experimental results reveal that the algorithm can
generate several feature-preserved simplified models,
which can be used in rendering LOD, feature-line
extraction, and laser-projection systems. Multi-sized
splats contributed to the improvement in the quality of
the model. In the future, we intend to make the
following improvements to the algorithm:

 Optimization of the evaluation operator for
point elimination. Improve the quality
according to an error metrics [Jianhua Wu et al.,
2005]

 Improvement in algorithm for using of
progressive multi-resolution point surfaces by
applying efficient data structures [Dachsbacher
et al., 2003], [Gobbetty and Marton 2004] and
compression schemes. [Fleishman et al., 2003]

 Implementation of our algorithm on a graphics
processing unit (GPU)

 Application of our algorithm to volumetric
point clouds

Acknowledgment
This work was partially supported by a Grant-in-Aid

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

147

for Scientific Research (B) 19300022 of the Ministry
of Education, Science, and Culture.

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

148

References
[1] ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S.,

LEVIN, D., AND SILVA, T. (2001) Point set surfaces. In
Proceedings of the IEEE Visualization 2001, pp.21-28.

[2] BATCHIMEG, S., FUJIMOTO, T., and CHIBA, N. (2009)
Generation of multiresolution point set surfaces using
multisized splats, In Proceedings of the Nicograph
International 2009.

[3] BOTSCH, M., AND KOBBELT, L. (2003) High-quality
point-based rendering on modern GPUs. In Proceedings
of the Pacific Graphics IEEE, Computer Society Press,
pp.335-343.

[4] BOTSCH, M., WIRATANAYA, A., AND KOBBELT, L. (2002)
Efficient high-quality rendering of point-sampled
geometry. Rendering Techniques 2002, Eurographics
Workshop on Rendering, Springer-Verlag, pp.53-64.

[5] BOUBEKEUR, T., DUGUET, F., AND SCHLICK, C. (2005)
Rapid visualization of large point-based surfaces. In
Proceedings of the VAST 2005, pp.75-82.

[6] CHEN, B., AND NGUYEN, M. X. (2001) POP: A hybrid
point and polygon rendering system for large data. In
Proceedings of the IEEE Visualization 2001, pp.45-52.

[7] COHEN, J. D., ALIAGA, D. G., AND ZHANG, W. (2001)
Hybrid simplification: Combining multiresolution
polygon and point rendering. In Proceedings of the IEEE
Visualization 2001, pp.37-44.

[8] DACHSBACHER, C., VOGELGSANG, C., AND STAMMINGER,
M. (2003) Sequental point trees. ACM Transactions on
Graphics, Vol.22, No.3, pp.657-662.

[9] DEY, T. K., AND HUDSON, J. (2002) PMR: Point to mesh
rendering, a feature-based approach. In Proceedings of the
IEEE Visualization 2002, Computer Society Press,
pp.155-162.

[10] FLEISHMAN, S., COHEN-OR, D., ALEXA, M., AND SILVA, T.
(2003) Progressive point set surfaces. ACM Transactions
on Graphics, Vol.22, No.4, pp.997-1011.

[11] GARLAND, M., AND SHAFFER, E. (2002) A multiphase
approach to efficient surface simplification. In
Proceedings of the IEEE Visualization 02, pp.117-124.

[12] GOBBETTI, E., AND MARTON, F. (2004) Layered point
clouds: A simple and efficient multiresolution structure for
distributing and rendering gigantic point-sampled models.
Computers & Graphics, Vol.25, No.1, pp.815-826.

[13] GROSSMAN, J., AND DALLY, W. (1998) Point sample
rendering. Rendering Techniques '98. Springer,
pp.181-192.

[14] HOPPE, H. (1996) Progressive meshes. In Proceedings of
the SIGGRAPH '96, Computer Graphics, pp.99-108.

[15] HÜBNER, T., ZANG, Y., AND PAJAROLA, R. (2006)
Multi-view point splatting. In Proceedings of the 4th
International Conference on Computer Graphics and
Interactive Techniques, pp.285-294.

[16] JAGAN, S., SAMET, H., AND VARSHBEY, A. (2007) A fast all
nearest neighbor algorithm for applications involving
large point-clouds. Computers & Graphics, Vol.31, No.2,
pp.157-174.

[17] KALAIAH, A., AND VARSHNEY, A. (2001) Differential point
rendering. In Proceedings of the Eurographics Workshop

on Rendering Techniques. Springer-Verlag, pp.139-50.
[18] LEVOY, M., AND WHITTED, T. (1985) The use of points as

display primitives. Technical Report TR 85-022, Univ.
North Carolina Chapel Hill, Computer Science
Department.

[19] LINSEN, L. (2001) Point cloud representation. Technical
Report 2001-3, Faculty of Computer Science, University
of Karlsruhe.

[20] MARINOV, M., AND KOBBELT, L. (2005) Automatic
generation of structure preserving multiresolution models.
Computer Graphics Forum, Vol.24, No.3, pp.479-486.

[21] MOENING, C., AND DODGSON, N.A. (2003) A new point
cloud simplification algorithm. In Proceedings of the 3rd
IASTED International Conference on Visualization,
Imaging, and Image Processing, Benalmadena, Spain,
pp.1027-1033.

[22] NICK, R., KELLY, S., AND VINCENT, F. (1995) Nearest
neighbor queries. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of
Data, pp.71-79.

[23] PAULY, M., GROSS, M., AND KOBBELT, L. (2002) Efficient
simplification of point-sampled surfaces. In Proceedings
of the IEEE Visualization 2002, pp.163-170.

[24] PAULY, M., KOBBELT, L., AND GROSS, M. (2006)
Point–based multiscale surface representation. ACM
Transactions on Graphics, Vol.25, No.2, pp.177-193.

[25] PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS, M.
(2000) Surfels: Surface elements as rendering primitives.
In Proceedings of the Computer Graphics SIGGRAPH
2000, pp.335-342.

[26] REUTER, P., JOYOT, P., TRUNZLER, J., AND BOUBEKEUR, T.
(2005) Point set surface with sharp features. Research
Report RR-1355-05.

[27] ROSSIGNAC, J., AND BORREL, P. (1993) Multiresolution 3D
approximations for rendering complex scenes. Modeling
in Computer Graphics: Methods and Applications,
Springer-Verlag, pp.455-465.

[28] RUSINKIEWICS, S., AND LEVOY, M. (2000) QSplat: A
multiresolution point rendering system for large meshes.
In Computer Graphics Proceedings, Annual Conference
Series (SIGGRAPH ‘00), Addison Wesley, pp.343-352.

[29] TOMASI, C., AND MANDUCHI, R. (1998) Bilateral filtering
for gray and color images. In Proceedings of the Sixth
International Conference on Computer Vision,
pp.839-846.

[30] TURK, G. (1992) Re-tiling polygonal surfaces.
SIGGRAPH ‘92, pp.55-64.

[31] WU, J., ZHANG, Z., and KOBBELT, L. (2005) Progressive
splatting. Eurographics Symposium on Point-Based
Graphics, pp.25-32.

[32] ZORIG, G., FUJIMOTO, T., and CHIBA, N. (2007) Point
splatting based on translucent shadow mapping and
hierarchical bucket sorting. The Journal of the Society for
Art and Science, Vol.6, No.1, pp.21-36.

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

149

Authors’ biographies

Batchimeg SOSORBARAM is currently a Ph.D.

candidate in computer
science at Iwate University.
Her research interests
include computer graphics
and point-based graphics.
She received the BE in
software engineering from
Mongolian University
Science and Technology,
Mongolia and the ME in
computer science from

Mongolian University Science and Technology,
Mongolia in 1999 and 2006, respectively.

Tadahiro FUJIMOTO is currently an associate

professor in the Department
of Computer and
Information Sciences at
Iwate University. His
research interests include
computer graphics,
geometric model, fractal
theory, and mathematics for
shape description in general.
He received the BE in
electrical engineering, and

the ME and Ph.D. in computer science from Keio
University in 1990, 1992, and 2000, respectively. He
worked at Mitsubishi Research Institute from 1992 to
1995. He was a research associate in the Department of
Computer and Information Sciences at Iwate
University from 1999 to 2002, and a lecturer from
2002 to 2005. He is a member of SAS Japan, IEICE
Japan, IPS of Japan, IEEE and ACM.

Norishige CHIBA is currently a professor in the

Department of Computer
and Information Sciences
at Iwate University. His
research interests include
computer graphics,
algorithm theory and
science on form. He
received the BE in
electrical engineering from
Iwate University and the
ME and DE in information

engineering from Tohoku University in 1975, 1981
and 1984, respectively. He worked at Nippon
Business Consultant Co., Ltd. from 1975 to 1978. He
was a research associate in the Department of
Communication Engineering at Tohoku University
from 1984 to 1986, an associate professor of computer
science at Sendai National College of Technology
from 1986 to 1987 and an associate professor of the

Department of Computer and Information Sciences at
Iwate University from 1987 to 1991. He is a member
of SAS Japan, IEICE Japan, IPS of Japan, IEEE and
ACM.

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

150

LOD and Point Models

ε = 0.9 ε = 0.5 ε = 0.1

n = 263,486 n = 236,758 n = 112,016

n = 99,423 n = 66,740 n = 41,769

n = 67,827 n = 46,874 n = 35,144

n = 256,459 n = 193,447 n = 128,268

Figure 8. LOD models (α = 0.1, Ψ = 0.01, β = 0.9)

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

151

 Ψ = 0.01 (iter = 1) Ψ = 0.02 (iter = 2) Ψ = 0.03 (iter = 3)

β = 0.1

 n = 45,906 n = 27,825 n = 19,997

β = 0.5

 n = 59,686 n = 33,753 n = 22,906

β = 0.9

 n = 78,903 n = 56,164 n = 39,554

Figure 9(a). Feature-preserved simplification with different parameters β and Ψ (α = 0.1,ε = 0.99)

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

152

 ε = 0.1 ε = 0.5 ε = 0.9

β = 0.1

n = 102,233 n = 106,278 n = 173,867

β = 0.5

n = 106,278 n = 154,696 n = 236,751

β = 0.9

n = 112,016 n = 236,758 n = 263,486

Figure 9(b). Simulation results with different parameters β and ε (α = 0.1, Ψ = 0.01)

芸術科学会論文誌 Vol. 9 No. 3 pp.140-153

153

(a) with same size of points (b) with different sizes of points

Figure 10. Effect of multisized splats (n = 184,312)

Feature-line

extraction

Laser

projection

Figure 11. Feature-line extraction and models for laser projection

