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Figure 1: The first two best views selected using our algorithm.

Abstract

We introduce a new framework for the automatic selection of the best views of 3D models based on the assumption that models belonging to the same class of
shapes share the same salient features. The main issue is learning these features. We propose an algorithm for computing these features and their corresponding saliency
value. At the learning stage, a large set of features are computed from every model and a boosting algorithm is applied to learn the classification function in the feature
space. AdaBoost learns a classifier that relies on a small subset of the features with the mean of weak classifiers, and provides an efficient way for feature selection
and combination. Moreover it assigns weights to the selected features which we interpret as a measure of the feature saliency within the class. Our experiments using
the LightField (LFD) descriptors and the Princeton Shape Benchmark show the suitability of the approach to 3D shape classification and best-view selection for online

visual browsing of 3D data collections.
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1 Introduction The mesh saliency [Lee et al. 2005] and the salient multi-view rep-
resentation [Yamauchi et al. 2006] are based on this idea. These
solutions consider isolated 3D models out of context. However, in

In recent years, with the significant advances in 3D acquisition order to capture the high-level semantic concepts of the 3D shapes,

and modeling, 3D model collections have gained significantimpor- which are very important for visualization and exploration, we con-

tance. They provide a mean for knowledge representation in a wide sider the problem in the context of 3D shape repositories where the
range of applications including Computer-Aided Design (CAD), data are clustered into semantic classes. The models within each
molecular biology, medicine, digital archiving, and entertainment. class share common semantic concepts. Best-view selection and

However, extraction and reuse of this knowledge depends on theview saliency quantification can then be formulated as a problem

availability of efficient tools for browsing the large collections of  of learning these features by the mean of feature selection and fea-

3D data available on the web. In this context, search engines areture importance measurement. This is a well studied problem in the
getting popular. For 3D models, the user specifies a query and thepattern recognition and machine learning community.

system returns a list of 3D models that match the query. However, . . ) . .

in many situations, the user would want to get a broad overview of The basic learning approach is the Nearest Neighbor classifica-

what is in the database or a broad overview of the search resultstion. It has been used for the classification of 3D protein databases

in order to refine the search query. In this case, the stored models/Ankerst et al. 1999], and 3D engineering parts [Ip et al. 2003].

should be presented to the user in the form of few representative Hou et al. [Hou et al. 2005] introduced a semi-supervised seman-

views, called also best or salient 2D views. Each one should carry tic clustering method based on Support Vector Machines (SVM) to

the information that allows to understand the structure of the shape©'9anize 3D models semantically. SVMs have been widely used
and to distinguish it from other shape classes. in statistical learning. The given query model is first labeled with

some semantic concepts and automatically assigned to a single clus-
The saliency of a 2D view of a 3D object can be defined as a func- ter. Then the search is performed only inside the corresponding
tion of some view-dependent shape properties. The salient view is cluster. Supervised learning and ground-truth data are used to learn
then the view that maximizes this function [Polonsky et al. 2005]. the patterns of each semantic cluster off-line. Later, they extend the
View entropy, for example, assumes that the best view of an object idea [Hou and Ramani 2006] to combine both semantic concepts
is the view that carries the largest amount of information about that and visual content in a unified framework using probability-based
object independently of the other objects in the database. In this classifier. They use a linear combination of several classifiers, one
paper, we define the best views of a 3D object as the views that al-classifier per shape descriptor. The individual classifiers, which are
low to distinguish the object from the other objects in the database. trained in a supervised manner, output an estimate of the probabil-
This definition is particularly suited for visual exploration and au- ity of data being classified to a specific class. The output of the
tomatic summarization of the contents of a database. Our solutiontraining stage is also used to estimate the optimal weights of the
is based on the assumption that 3D models belonging to the samecombination model. In this approach features to use and type of
class of shapes share the same salient features. Therefore, findinglassifiers are defined manually. The method we propose provides
the best views of a 3D model, that we aalpresentative feature set ~ aframework for automatic feature selection and weight assignment.

Iciaaar:r?iﬁg;eogfirk?ae;eafz:tfjergéuglelosviet?ggpttisrg t}’l:l)::‘:licg;ﬂ-?g\)/léls gg;g’rllstiq'he closest work to ours is of Shilane and Funkhousgr [Shllane_ and
concepts of the data using low-level geometric features Funk_houser e Q7]. Their approach uses also supervised learning to
) predict the retrieval performance of each feature, and select only a
set of the most effective descriptors to be used during the retrieval.
Given that the descriptors are computed locally, the approach al-
Jows to select the most important regions of the surface of a 3D
shape. The algorithm we propose relies on a large set of features
and the computation time at the run-time is not affected by the num-
ber of features. Specifically, we make the following contributions:

This paper extends over the approach proposed in [Laga and Naka
jima 2007] which is based on boosting. Our key idea is to use a
large set of local and global features that describe the shape whe
viewed from different viewing angles, then use AdaBoost [Schapire
2003] to select only the most efficient ones. Boosting as a mean for
classifier combination provides an efficient way for feature selec-
tion and combination. It has been efficiently used for online learn- 1. an algorithm for learning the discriminative 2D views of a
ing of the query features for relevance feedback in image retrieval class of shapes from a training set,

[Tieu and Viola 2004; Amores et al. 2004]. Boosting, like many

machine-learning methods, is entirely data-driven in the sense that 2. & measure for the discrimination ability of 2D views with re-
the classifier it generates is derived exclusively from the evidence spect to the semantic classes defined by the database classifi-
present in the training data itself [Schapire 2003]. Moreover, allow- cation,

ing redundancy and overlapping in the feature set has been proven
to be more efficient in recognition and classification tasks than or-
thogonal features [Tieu and Viola 2004].

3. a method for selecting automatically the best views of 3D
models,

4. the selected views are consistent for all objects of the same

The problem of defining representative 2D views of 3D models has class, and are suitable for multi-scale organization of the
received increasing attention in recent years. Early works study the shape space based on the hierarchical classification of the
similarity and stability relationship between different 2D views of a training set.
3D model [Denton et al. 2004; Yamauchi et al. 2006]. The common ] ) o ] )
approach is to: Best view selection has many applications in Computer Graphics
and online browsing of digital media contents. We are particularly
1. extract a set of features from the 3D model, motivated by the automatic generation of thumbnails of 3D models,
automatic summarization of the database contents, and 2D-based
2. quantify the importance of each feature, 3D model search.

3. define the importance of a view as a function of the impor- This paper is organized as follows; Section 2 gives and overview of
tance of the features that are visible from a given viewpoint, the proposed framework. Section 3 details the feature selection and

combination algorithm for binary classification problems. The gen-
4. then select the set of views that maximizes this quantity. eralization to a multi-class problem, and to unseen 3D models are
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presented in Section 4.1 and 4.2. Experimental results are providedto follow a machine learning approach where each classifier is ob-
in Section 5. Section 6 concludes the paper. tained by the mean of training data. In the following we explain in
detail each step in the case of a binary classification problem.

2  Overview 3.1 Feature extraction

Our approach performs as follows; During the training stage a The process starts by computing a large set of features for each
strong classifier is learned using AdaBoost. The classifier returns model in the training set, the contents of the database to search.
the likelihood that a given 3D modél belongs to a class of shapes ~There are many requirements that the features should fuffill: (1)

C. First a large set of features are extracted. In our implementa- compactness, (2) computation speed, and (3) the ability to discrim-
tion we used 100 Light Field Descriptors (LFD) [Chen et al. 2003]. inate between dissimilar shapes. However, in real applications it is
Each descriptor encodes the properties of a 2D projection of a 3D hard to fulfill these requirements when the goal is to achieve high

shape. Then a set of binary classifiers are trained using AdaBoost.retrieval accuracy. In fact, compact features, which are easy to com-
Each binary classifier learns one class of shapes and its optimal sepute, are not discriminative enough to be used for high accuracy

of salient views. Finally, the binary classifiers are combined into retrieval. We propose to extract a large set of features following the
one multi-class classifier. same idea as in [Tieu and Viola 2004].

At the run-time, given the user-specified 3D mo@ela ranked list There are many shape descriptors that can be computed from a 3D
of k—best views is produced in a two-stage process. First, a large model. A large set of spherical harmonics [Funkhouser and Shilane
set of features are computed from the query m@eh the same 2006] and spherical wavelet-based descriptors [Laga et al. 2006]
manner as for the database models. Then in the first stage, a sefan be computed by moving the center of the sphere across differ-

of highly relevant classes  is found. Each binary classifief; ent I_ocations on the shape’s surface or ona 3D grid. H(_)wever, in
decides wether the cla is relevant to the quer@ or not. The the literature, it has been proven that view-based descriptors out-
class with highest posterior probabiligt, = argmax:P(C|Q) is perform significantly the spherical descriptors. We propose to use

selected. In the final stage, the best views of the query nQdeé the Light field descriptors (LFD).

the selected views of the class of shapgs First, all the models in the database are translated to their center of
h mass, scaled to fit inside a unit sphere, and normalized for rotation
using continuous PCA [Vranic 2003]. Then we compute for each
3D model a set of 100 Light Field descriptors in the same manner
as in [Chen et al. 2003]. Recall that the length of one light field de-
Scriptor is 45. Therefore, every 3D model is represented with a set
of 100 vectors of dimension 45. Each LFD provides a description
of the shape when viewed from the corresponding projection point.

The key step is the way we predict the saliency of each feature wit
respect to a class of shapes in the training set. More formally, the
saliency of a featuré& with respect to a class of shap@ss the
ability of this feature to discriminate the shapes of clagsom the
shapes of other classes in the database. Mathematically, given th
binary classifiefsy, trained with the featuré’, the saliency ofv’
is directly related to the overall classification error@§ on the
data set. However, none of the existing classifiers that are based
on a single feature can achieve zero classification error. Therefore
none of the features is sufficiently salient. AdaBoost providesaway 3.2 Boosting the binary classification
for combining weak classifiers and shape features with different
saliency degrees, into a single strong classifier with high classifica- A brute force approach for comparing a large set of features is com-
tion performance. There are several advantages of this approachpytationally very expensive. In the best case, it requitesd x N
Although a large set of features is extracted both at the training and comparisons, wherl is the number of feature vectors used to de-
online stages, only a small subset of the features (between 10 toscribe a ® model,d is the dimension of the feature space, &hd
50) is used during the similarity estimation. This allows retrieval at s the number of models in the database.
interactive rates.
Previous work consider this problem from the dimensionality re-
Finally, the algorithm selects automatically the representative set of duction point of view. Ohbuchi et al. [Ohbuchi et al. 2007] provides
features for each class of shapes, and provides a mean for automatian overview and performance evaluation of six linear and non-linear
combination of the selected features. In our implementation, we use dimensionality reduction techniques in the context of 3D model re-
the Light Field descriptors (LFD) which has been proven to be the trieval and demonstrated that non-linear techniques improve signif-
most effective on the Princeton Shape Benchmark (PSB) [Shilaneicantly the retrieval performance. There have been also a lot of
et al. 2004]. However, a further investigation is required to test the research in classifiers that have a good generalization performance
efficiency of other 2D view descriptors when boosted. by maximizing the margin. The major advantage of boosting over
other classification algorithms such as Support Vector Machines
(SVM) [Hou et al. 2005], and non-linear dimensionality reduction
. o . . techniques [Ohbuchi et al. 2007; Ohbuchi and Kobayashi 2006] is
3 Supervised classification - the binary case its speediness. Moreover, it provides a good theoretical and practi-
cal quantification of the upper bound of the error rate, therefore a

. . . . . . ood generalization performance. Furthermore, it can be used as a
The first task in our approach is to build a classifféthat decides ?eaturg selection alggrithm.

wether a given 3D modéD belongs to a class of shap€r not.

The challenge is to define a feature space such that 3D shapes bewe use AdaBoost version of boosting. Every weak classifier is
longing to the same class are mapped into points close to each othebased on a single feature of a 3D shape (recall that we have com-
in the new feature space. Clusters in this feature space will corre- puted a large set of features for each 3D model). The final strong
spond to classes of 3D models. There are many feature spaces thatlassifier, a weighted sum of weak classifiers, is based on the most
have been proposed in the literature, but it has been proven thatdiscriminant features weighted by their discriminant power. The
none of them achieved best performance on all classes. We proposalgorithm is summarized in Algorithm 1. The output of the strong

-126-



The Journal of the Society for Art and Science \Vol. 7 No. 4 pp. 124 - 131

classifier can be interpreted as the posterior probability of a €lass 3.3 Interpretation of the weak classifiers
given the shap®:

Boosting algorithm can be used as a feature selection and combi-
efc(©) nation technique. Each iteration learns a new weak classifier that
efc(0) 4 g—1c(0) @) is based on the most discriminative feature according to the prob-
ability distribution of the training data. In the case of LFD, the
selected feature is the descriptor of a 2D projection of a 3D model.
Therefore, by adopting a Boosting approach we provide a tool for
best view selection and view ordering based on their ability to dis-
criminate the shapes of a certain class from the other classes in the
database. Recall that here we assume that the quality of a view is

P(C|0) =

where fc(O) is the weighted average of the base classifiers pro-
duced by AdaBoost for the 3D objeCt

Algorithm 1 : AdaBoost algorithm for binary classification quantified as its discrimination ability. Furthermore, the weight of
Input: each weak classifier can be considered as a measure of the saliency
e Training setsc = {(Vi,Vi),i = 1...N}, where of the selected feature.
Vi ={V1,..., Vk} alarge set oK features computed
from the 3D object;,
yi € {+1,—1} the desired classification @.
Output: 4 Generalization

e The decision functiorfc, such thatfc(O) >0isO € C,
andfc(0) <0ifO¢C.
1. Initialize the sample weightsig;,i = 1,...,N: 4.1 Generalization to multiple classes
o N—{., if Oj is a positive example
Wi = N—l,,otherwise Two straightforward extensions schemes are the one-vs-all classi-
fier and the pairwise classifier [Hao and Luo 2006]. The pairwise

whereN* andN~ are, respectively,the number of positive ~ classifier use&(L —1)/2 binary classifiers, wheteis the number

and negative examples. of classes in the training set, to separate each class from the other
2. fort=1, ..., Tdo classes. A voting scheme at the end is used to determine the correct
(a) Train one weak classifiéy, k= 1...K for each classification [Hao and Luo 2006]. With the one-vs-all classifier,
feature vectowy, AdaBoost-based binary classifiers are trained, each of which is able
(b) Choose the hypothedis with the lowest to distinguish one class from all the others. The pairwise classifier
classification errog;. has a smaller area of confusion in the feature space compared to
(c) Update the sample weights: the one-vs-all. In our implementation we used a one-vs-all classi-

1 _ } fier for its simplicity. The details of the algorithm are sketched in
Whi1j =2 Whie ah(O)% wherehy (O;) = +1, -1 Algorithm 2.
wetherQ; is correctly or incorrectly classified by the . . . .
k hypothesit, a; = 051 15 4z i The output of the training stage is a set.dinary classifiers, where
weak nypothesiBy, v = . Og(_ & > and41Sa | s the number of classes in the database. Given a query model
normalizing constant so thak. 1 is a distribution.  Q each binary classifier will return a vote for a certain class. We

end use the positive votes to construct the set of candidate classes to
) N T which the quenQ may belong. It is important to notice that when
3. Final classifierfc(0) = Ziatht (O). anew 3D model or a new class of models are added to the database,
t= only the classifier that corresponds to the model’s class that needs
training.

AdaBoost requires only two parameters to tune; the type of weak
classifier, and the maximum number of iterations, i.e., the num- Algorithm 2: One-vs-all extension of binary AdaBoost for
ber of weak classifiers. The classification performance of the weak multi-class problem.

classifier is only required to be slightly better than random. We used ™ |npuyt :

the LMS classifier bacause of its simplicity. The param@&tean e Training setsy = {(V/,y}),i=1...N},| =1,...,L, where
be set such thd|fc], the upper bound of the classification error on V! = (V! vl allérlge set oK featureé computed
the training data of the strong classifigy, is less than a threshold frlom the éD abjeléoi

6. In our experiments we found that a valueTobetween 20 and
50 is sufficient to achieve an upper bound of the classification error
on the training set less thanO%b.

yl € {+1, -1} the desired classification &.
Output:
o L binary decision functiongc, , such thatfc, (O) > 0isC; is
a candidate class for the 3D modz|

For training the classifiers we use as positive and negative exam- andfg (O) < 0 otherwise.

ples the relevant and non-relevant models provided in the Prince-
ton Shape Benchmark (PSB) classification. For example, to builda  for I=1, ..., L do _ - _ _
strong classifier that learns the decision boundary betwedijbd 1. Train one strong binary classifi#f, using Algorithm 1.
humanobjects andhon-biped humanbjects, the positive examples

are set to all models that belong to the clagsed humanwhile the
negative examples are the remaining models in the database. The
PSB is provided with a train and test classifications. We use the
train classification to train our classification and the test classifica-
tion to assess the performance of the classification and retrieval.

fq (O) > 0if O € G, and negative otherwise.

end
Final classifier® = {4}, = 1,...,L}.
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4.2 Generalization to unseen 3D models Figure 3 summarizes the classification performance of the devel-
oped AdaBoost classifier. In this figure, the average classification
At the run time, the user specifies a 3D model, that we call a query Performance is the ratio between the number of correctly classified

Q, and seeks to find its salient 2D views. This is performed in two Models of a clas€ to the total number of models in the class. We
steps; first we seek to find the candidate classes to which the queryS€€ that, for the coarse3 classification (Figure 3-(d)), which con-

may belong. Then, the best views of the query model are those t&ins only two classes with very high shape variability within each
selected for its best candidate class. class, the classification performance is at385b for natural shape

and 73% for man-made models. This clearly proves that the training
To classify the quen®, we compute a set dfl feature vectors procedure captures efficiently the semantic concepts of the shape
(LFD in our case) in the same manner as in the training stage (Sec-classes and generalizes relatively well to unseen samples.
tion 3.1). Then we let each binary classifigrvote for a the class o
G, =1,...,L. The candidate classes are determined by the classi- The performance on the. othgr classification levels: basg, coarsgl
fiers that have positive response to the qu@nWe order them in  and coarse2 are shown in Figure 3-(a),(b) and (c). In this experi-
descending order of the class posterior probabilities given in Equa- Ment we show only the classification results on the classes of the
tion 1. Next, we select the class with the highest response and as{€st Set that exist in the training set. On the base classification (Fig-
sign to the 3D model the best views that have been learned for thisUre 3-(2)), we can see that the classifiers achieve 100% classifica-
class, i.e, the salient features of the cl@ssNotice that the clas-  tion performance orspaceship.entrepriselike, diningchair and

sification is performed only on a subset of the large set of features, S€avessel The lowest performance is on tipgant tree models.
This has significant impact on the computation time. This is because probably the class has high variability and many
small detailed features that cannot be captured by the Light Field

descriptors.

5 Experimental results To evaluate the retrieval performance we use the query set of the
SHREC2006. Recall that none of the query models is present in
the database. Therefore, they can be used to assess the ability of

To evaluate the performance of the proposed approach, we use thehe classifier to generalize to unseen models. We compare with the

Princeton Shape Benchmark (PSB) [Shilane and Funkhouser 2006]algorithms that have been benchmarked in the contest [Veltkamp

training and test sets, and the Shape Retrieval Evaluation Contesfet al. 2006]. We show only the top six results but the reader can

(SHREC2006) [Veltkamp et al. 2006] query set and performance refer to [Veltkamp et al. 2006] for a complete comparison. Each

evaluation tools. The Princeton Shape Benchmark contains 1814query has a set dfighly relevantclassestelevant classesandnot

polygon soup models, divided into the training set (907 models) relevant classes

and the test set (907 models). Every set contains four classification )

levels; the base train classification contains 129 classes while theTable 1 summarizes the performance on the Mean Average Pre-

coarsest classification (coarse3) contains two classes: man-madg&ision, Mean First Tier and Second Tier, for both highly relevant

and natural objects. We use the base train classification to train ourand relevant classes. Our method ranks top on all measures for

classifiers and the test set to assess the classification performance relevant classes. Moreover, it outperforms significantly the other
methods on the Mean Second Tier for both highly relevant and rel-

Figure 1 shows the first two best views of five different models. evant classes. This shows that the combination of classification and
This figure shows clearly that the important features of the models search improves the ability to retrieve the relevant results in the top
are visible from the selected views. Figure 2 shows other results. of the retrieved list. Our method however, achieved relatively low
In this experiment, for each model we show the first five best views performance on Cumulative Gain-related performance measures.
automatically selected by our algorithm. The views are ordered We believe that this is because of lack of data at the training stage
by their saliency value. There are two important properties of our and therefore, it is hard to capture the salient features of the class.
algorithm: We plan in the future to experiment with larger databases.

e First, the selected views are consistent across all models of aFinally, we compare the retrieval performance of the selected views
same class of shapes. This is shown by the first and secondwith the retrieval performance of the LFD. In this experiment we
rows of Figure 2 for the horse class, row 3 and 4 for the hand use our own implementation of the LFD. Table 1 shows that the
class, row 5 and 6 for the dinosaur class, and rows 7, 8, 9 for proposed method outperforms significantly the original LFD which
the rabbit class. Notice that the two hand models have differ- uses 100 views sampled uniformly around the object. This partic-
ent shape and posture. Even with the presence of high shapeularly demonstrates that the selected views with our algorithm are
variability within the classes, the algorithm we developed is salient as they allow to discriminate the object from the other ob-
able to compute consistent best views. jects in the database. However, in some situations such as the rabbit

model in Figure 2, the selected views may not be visually plausi-

ble. We plan in the future to extend our algorithm by incorporating
more constraints, physical constraints for example, to handle such
situations.

e The LFD we used to characterize each 2D projection is rota-
tion invariant in the 2D plane, and reflectance invariant in 3D.
Consequently, the selected best views are 2D rotation and re-
flectance sensitive. We can see this for the hand class (rows
3 and 4), and also for the rabbit class (rows 7, 8, and 9). We
will experiment in the future with descriptors that take into
account the symmetries of the 3D model. 6 Conclusion

To evaluate quantitatively the efficiency of the best view selection

algorithm, we propose to use the selected views as features for in-We have proposed in this paper a new framework for best view se-
dexing 3D model collections. We assume that the selected views arelection of 3D models. By using a boosting approach we are able to
good if they achieve better classification and retrieval performance use a large set of features in order to capture the high level semantic
than when using the entire set of 2D views. This is equivalent to our concepts of different shape classes. Moreover, we provide a way to
initial assumption which states that a 2D view is salient if it allows quantify the saliency of a 2D view with respect to the classification.
to discriminate the object from the other objects in the database. The developed algorithm allows to use simultaneously a cascade of
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Figure 2: The first five views selected by the Boosting algorithm and ordered by the decreasing saliency value.
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Average classification performance
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Figure 3: Average classification performance for each class of shapes in the test set of the Princeton Shape Benchmark.

shaped descriptors. Although we have experimented only with one
type of descriptors, we may want to use a different set of descriptors

for classification.

This work opens many avenues to explore. First, the framework

databases. Ithe Seventh International Conference on Intelligent
Systems for Molecular BiologpAAI Press, 34—43.

CHEN, D.-Y., TIAN, X.-P., SHEN, Y.-T., AND OUHYOUNG, M.
2003. On visual similarity based 3D model retriev@omputer

we proposed allows the use of heterogeneous features, all what we Graphics Forum 223, 223-232.
need is to plug new types of descriptors to the training process.
Particularly we are interested in descriptors that take into account DENTON, T., DEMIRCI, M., ABRAHAMSON, J., SHOKOUFAN-

the 2D and 3D symmetries in order to solve the ambiguity problem
illustrated in Figure 2. Also we plan to investigate on the meaning

DEH, A., AND DICKINSON, S. 2004. Selecting canonical views
for view-based 3-D object recognition. 1I: 273-276.

of the selected feature space for each shape class and extend the

framework to the problem of building creative prototypes of 3D

object classes, where the prototype should capture the high level

semantic features of the class.
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Rank Methods Value Rank Participant Value
1 Shilane etal. (R3)  0.53 1 Our method 0.53
2 Zahariaetal. (R1) 0.50 2 Shilane et al. (R3) 0.52
3 Our method 0.49 3 Zahariaetal. (R1) 0.51
4 Makadia et al. (R2) 0.46 4 Shilane et al. (R2) 0.49
5 Shilane et al. (R2) 0.48 5 Makadia et al. (R2) 0.43
6 Makadia etal. (R1) 0.47 6 Makadia et al. (R1) 0.42
7 LFD 0.28 7 LFD 0.22

(a) Mean Average Precision(highly relevant). (b) Mean Average precision (Relevant)

Rank Methods Value Rank Participant Value
1 Makadia etal. (R2) 44.77% 1 Our method 43.78%
2 Makadia et al. (R1) 43.77% 2 Makadia et al. (R2) 40.55%
3 Our method 43.28% 3 Makadia etal. (R1) 38.78%
4 Daras et al. (R1) 42.74% 4 Shilane et al. (R3) 37.40%
5 Papadakis et al. (R1)4185% 5 Papadakis et al.(R1) 37.40%
6 Shilane et al. (R3) 40.86% 6 Shilane et al. (R2) 37.30%
7 LFD 24.51% 7 LFD 21.63%
(c) Mean First Tier (Highly relevant). (d) Mean First Tier (Relevant)
Rank Participant Value Rank Participant Value
1 Our method 39.97% 1 Our method 42.73%
2 Makadia et al. (R2) 27.86% 2 Shilane et al. (R2) 26.58%
3 Makadia et al. (R1) 26.62% 3 Shilane et al. (R3) 26.26%
4 Daras et al. (R1) 25.663% 4 Makadia et al. (R2) 25.22%
5 Shilane et al. (R3) 25.63% 5 Zaharia et al. (R1) 24.63%
6 Papadakis etal. (R1) 25.61% 6 Papadakis et al. (R1) 24.24%
7 LFD 15.80% 7 LFD 14.32%
(e) Mean Second Tier (Highly Relevant) (f) Mean Second Tier (Relevant)

Table 1: Mean Average precision, Mean First Tier and Second Tier performance.
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