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Abstract 

 
In this paper we present our solution for shadow 
generation, visibility sorting and GPU based shading 
of translucent point data for point based rendering. Our 
Translucent Shadow Mapping Algorithm uses a 
spherical coordinate system and solves the distance-
based sorting, transparency calculation, shadow 
mapping, omni-directional mapping and light intensity 
attenuation problems in one step. We also propose a 
novel algorithm for visibility sorting of unstructured 
point data using the Hierarchical Bucket Sorting 
approach. This algorithm uses less memory and 
produces precise back-to-front ordered slices 
compared to previous methods. Finally, the shading 
calculations are performed in the GPU, using the 
rendering-oriented attributes of the point splats. 
Furthermore, we demonstrate the efficiency and 
flexibility of our novel approach of point splatting by 
showing several rendering results for visualizing 
mixed 3D data sets.  
Keywords: point splatting, translucent shadow 
mapping, visibility sorting, GPU acceleration, 
visualizing mixed 3D data 
 

1. Introduction 
 

Rendering is a fundamental component of computer 
graphics. At the highest level of abstraction, rendering 
describes the process of converting a description of a 
three-dimensional scene into an image. In the early 
years of computer graphics, research in rendering 
focused on solving fundamental problems such as 
determining which objects are visible from a given 
viewpoint. As these problems have been solved (e.g., 
z-buffer techniques) and as richer and more realistic 
scene descriptions have become available, modern 
rendering has grown from the ideas from a broad range 
of disciplines, including physics and astrophysics, 
astronomy, biology, psychology and the study of 
perception, and pure applied mathematics. 
Our work addresses the solution of two major 

problems of rendering complex scenes, which is still 
challenging due shortage of existing algorithms: (1) 
translucent shadow generation of point data and (2) 
effective visualization of unstructured point data with 
extended rendering oriented properties.  
Points are clearly the simplest graphics primitive. In 

some sense, they generalize pixels and voxels toward 
irregular samples of geometry and appearance. The 

Figure 1. Examples of the rendered images of mixed point, polygon and volume data. (a) Composition of the 
particle model (cloud), the volume data (tree, grass, fountain, road), the polygon model (dragon) and the point 
clouds (building, basin) in an outdoor scene, (b) mixing the surface model (skull) and volume data (head) in medical 
imaging, (c) visualizing the volume data (retina), the translucent surface (iris) and the opaque surface (lens) in an 
artificial eye. 

(a) (b) (c) 
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conceptually most significant difference from triangle 
representation is that points –much like voxels or 
pixels – carry all the attributes needed for processing 
and rendering. Until recently, limited programmability 
has hampered the implementation of point-based 
rendering algorithms on graphics hardware. However, 
with the current generation of GPU, it is now possible 
to control large part of the point rendering process at 
the interactive rate. Current point primitives store only 
limited information about their immediate locality, 
such as their position in 3D space, the normal vector, 
the bounding ball, and the tangent plane disk. However, 
our point splatting system uses many other attributes to 
render different models. Splatting-based rendering 
techniques are currently the best choice for efficient 
high-quality rendering of point based geometries.  
Translucency is also an important graphics effect that 

can be used to significantly increase the realism of the 
rendered scene to enable more effective visual 
inspection.  Rendering of translucent objects is realized 
by a process called alpha blending in most modern 
graphics systems. For correct visualization, all objects 
must be “blended” in back-to-front order. This can be 
achieved either by sorting the fragments at each pixel 
in image space or by sorting the points in object space. 
Our bucket sorting algorithm performs a distance 
based slicing of all points in object space. It avoids 
sorting the points in the same slice. This important 
feature of not sorting all the points saves time, and the 
slicing operation performs much faster than sorting all 
points. 

The main steps of proposed point splatting system 
are as follows:  
Step 1. The first step in the rendering engine is 
preprocessing, which may include conversion to a 
common format (points with rendering-oriented 
attributes), coordinate transformation to the world 
coordinate space, data analysis for future processing, 
subdivision of polygonal meshes to adapt the point 
densities, and normal vector computation. 
Step 2. The rendering system uses the translucent 
shadow mapping method to build a translucent shadow 
mapping table for each light source. 
Step 3. In the final step, the following are carried out: 
simple object level visibility culling, hierarchical 
bucket sorting for back-to-front alpha blending, 
advanced shading for rendering-oriented points in the 
GPU and splatting-related computations. 
Our main contributions are as follows: 
 We use extended rendering-oriented attributes for 

the point splats. The shading of each splat is 
processed differently on GPU, depending on the 
additional properties of each splat. 

 We propose a novel algorithm for visibility 
sorting using the Hierarchical Bucket Sorting 
approach. 

 To solve the translucent shadow-mapping 
problem, we use a spherical coordinate system 
and it solves the distance-based sorting, 
transparency calculation, shadow mapping, omni-
directional mapping and light intensity 
attenuation problems in one step. The proposed 
algorithm works even in the difficult situation 
where the light sources are inside the translucent 
object. 

In other words, the proposed point splatting system 
can render translucent objects with the same efficiency 
as opaque objects. It can render polygon data, particle 
models, point clouds and volume data. Moreover, it 
handles mixed data types well, which is a 
problematical task for other rendering methods. 
In Figure 1 we show several images, in which the 
mixed data visualization provides a better perception 
of the relationships between the different components 
of the images.   
In this work we also attempt to demonstrate the 

benefits of our point splatting system to solve the most 
difficult problems of rendering mixed data objects 
such as (1) rendering unstructured point data, (2) 
shadow generation of translucent point objects and (3) 
mixed shading of surface and volume data on the GPU.  
 The rest of paper is organized as follows: examination 
of related work is described in Section 2, extended 
attributes for mixed rendering surface and volume 
points are briefly described in Section 3, the rendering 
pipeline and major modules of the system, namely 
translucent shadow mapping, sorting and shading, are 
presented in Section 4. Section 5 gives some 
experimental results, followed by the conclusion in 
Section 6.  
 
2. Related work 
 
The work presented in this paper is closely related to 
the following sub-domains in computer graphics: point 
splatting, translucent shadow mapping, visibility  
sorting, rendering of unstructured grids and mixed 
surface and volume rendering. 
Point splatting. The use of points as display 
primitives was first proposed by Levoy and Whitted 
[1]. Currently, many researchers have demonstrated 
that a splatting approach is doubtless the best choice 
for high-quality and efficient point-based rendering [2, 
3, 4]. 
Splatting is a popular algorithm for direct volume 

rendering that was first proposed by Westover [5]. 
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Zwicker et al. [6] introduced EWA (elliptical weighted 
average) filtering to avoid the aliasing of surface 
textures and extended his framework to volume 
splatting. To accelerate volume splatting Chen et al. 
[7] proposed a hardware-accelerated adaptive EWA 
volume splatting algorithm. Although research on 
surface splatting has produced very impressive results, 
we face numerous open research problems in the 
translucent point based graphics. In this work we 
investigate the question of (1) what additional 
information we have to store with each point, (2) how 
to effectively generate the shadow of points with 
different levels of translucency and (3) what kind of 
sorting method is more optimal for alpha blending the 
unstructured point clouds. 
Translucent shadow mapping. In recent years, both 
Williams’ original Z-buffer shadow mapping algorithm 
[8] and Crow’s shadow volumes [9] have gone through 
many variations. Hasenfratz et al. [10] made a 
broader survey of real-time soft shadow algorithms.  
Unfortunately, most shadow generation methods still 
do not scale well to scenes with translucent objects and 
most have difficulties with omni-directional lights. 
Several papers propose a method for rendering 
translucent objects. Dachsbacher et al. [11] use two 
simultaneous rendering targets to map translucent 
objects. Recently, many authors have used the multi-
pass shadow mapping or the depth peeling [12] method 
and the ray casting algorithm [13] to generate 
translucent shadow maps. Even though some of those 
translucency rendering and shadow generation 
methods can produce sufficient results, most of them 
still have challenging problems such as the 
performance penalty due their multipass nature [12] 
and the problem of undersampling [13].  
Our method differs from those methods in the 

following ways. 
 We implement the spherical mapping techniques on 

shadow mapping. It allows us to solve the omni 
directional light problems of the shadow mapping. 

 Our algorithm helps to solve distance based sorting, 
transparency calculation, shadow mapping, light 
attenuation, collision detection and early ray 
termination problems. 

 Unlike the other shadow mapping tables, our 
translucent mapping table can stores the full 
information of mapped points with rendering 
oriented attributes for physically correct shadows 
generation. 

Visibility sorting. A large volume of research has 
been devoted to visibility sorting due to its importance 
in computer graphics. In more recent work, 
Govindaraju et al. [14] describe an efficient method for 
visibility sorting by performing image space occlusion 

computations. Callahan et al. [15] propose a hardware 
assisted visibility sorting algorithm that operates in 
both object space and image space. Some authors offer 
GPU-based parallel sorting of points [16, 17] for 
correct alpha blended rendering. We introduce the 
view aligned slicing method based on the hierarchical 
bucket sorting algorithm, which works in linear 
computational time. The work most relevant to our 
method is presented by Yagel et al. [18] and Chopra et 
al. [19]. Our algorithm uses less memory and produces 
precise slices compared to the previous methods. 
Rendering of unstructured grids. Rendering of 
unstructured grids has been a topic of much research, 
and major advances have been made in performing this 
rendering efficiency.  Two major techniques are 
popular in volume rendering algorithms for 
unstructured grids: ray-casting and splatting. The ray-
casting approaches [20, 21, 22] store the grids in 
texture memory and performs cell traversal for each 
ray in the shader program. Splatting methods such as 
the projected tetrahedral method [23, 24, 25] have 
become one of most popular methods for rendering 
unstructured grids. All these approaches must 
overcome two computational bottlenecks: cell ordering 
and per cell processing, both of which are not easily 
solved. Since visibility ordering is essential for volume 
rendering unstructured grids via cell projection, many 
techniques have been developed that order the 
tetrahedra [26, 27]. The most recent work by Callahan 
et al [15] addresses to depth sorting by computing a 
partial ordering on the CPU and then using the GPU 
for help finish the sort. In this paper we are mainly 
focused on the accurate sorting of points (it is suitable 
only for point data) and shading each point splats 
differently on the GPU.  
Mixing point clouds, polygons and volume data. 
Earlier implementations of visualization for mixed 3D 
data focused primarily on multi-pass hybrid methods. 
Levoy developed a hybrid ray tracing algorithm [28]. 
He modified the conventional ray tracer for handling 
polygon and volume data. Kreeger et al. [29] proposed 
a rendering approach based on 3D texture mapping.  
Roettger et al. [30] used 3D texture mapping and 2D 
texture mapping to combine projected tetrahedral 
volumes with isosurfaces. More recently, some 
researchers have developed hybrid rendering methods 
[31]. All of those works show numerous research 
problems to render the mixed scenes, such as the most 
effective way (multipass methods, hybrid methods or 
methods based on common presentation), illumination 
(including shadow) models of objects with different 
physical characteristics, and appropriate data structures 
for shading the mixed scenes.   
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In this paper, however, we present a completely 
different approach to rendering mixed data. We are 
primarily interested in the mixed rendering of 
unstructured data and in the improvement of 
visualization using translucent shadow mapping and 
GPU based shading. We chose the point model as the 
most suitable model for shared representation of 
polygon, volume and point data for rendering mixed 
objects. Although, much excellent research work has 
been performed on point splatting such as surface 
splatting [2, 3, 4] and volume splatting [19, 6]. We did 
not find appropriate studie on mixed splatting. The 
point type of representation and the splatting type of 
rendering meet a number of criteria that are important 
for mixed rendering of polygon, volume and point 
models.  

 The conversion from a volumetric data or a mesh 
model to a point cloud in 3D space is 
conceptually and geometrically simple. In most 
cases we just replace a vertex or a voxel by a 
point splat. The important operation in converting 
the polygonal models into point models is the 
subdivision of the surface into finer-level 
triangles. The rendering-oriented attributes, such 
as the normal vector, the color value and the 
physical values can come from the original 
modeling data.   

 Rendering-oriented point splats have unique 
flexibility in that they can form translucent 
(volume splatting) and opaque (surface splatting) 
splats. They can depict volume data, point clouds 
and micro objects with specific material 
properties. 

 
3. Point attributes for rendering mixed 3D 
data. 
 
Point-based rendering schemes have evolved as an 
efficient alternative to triangle-based rendering. We 
chose the point splatting method for mixed rendering 
due to (1) the efficiency in rendering complex 
environments, (2) zero connectivity for efficient 
streaming for GPU-based stream processing, and (3) 
productivity in visualizing both surface and volume 
data. 
Current point primitives store only limited 

information about their immediate locality, such as 
their position in 3D space, the normal vector, the 
bounding ball, and the tangent plane disk. However, 
our point splatting uses many other attributes to render 
different models.  
In our rendering system, we use the following data 
structures for rendering-oriented point splats.  

 3D geometrical attributes (position, normal 
vector, local differential geometry information) 

 Color attributes (color, opacity, material ID, 
texture ID, shadow coefficient)  

 Other values (object ID, size, physical value) 
For some attributes we define a separate lookup table 
and combine the corresponding values during the point 
rendering of the surface and volume data. We call our 
primitive a “rendering-oriented particle” because it 
presents a small point with additional physical values.  
 
4. The rendering pipeline 
 
The proposed point splatting pipeline is illustrated in 
Figure 2.  

 
The first step in the rendering engine is preprocessing, 
which may include conversion to a common format 
(points with rendering-oriented attributes), coordinate 
transformation to the world coordinate space, data 
analysis for future processing, subdivision of 
polygonal meshes to adapt the point densities, and 
normal vector computation.  
Converting the polygonal models. Compared with 
the point cloud model, a polygonal model contains 
additional topological information that defines the 
neighboring relationship and order among points.  The 
most important operation in the preprocessing step in 
rendering the polygonal models is the subdivision of 
the surface into finer-level triangles, where the 
triangles can be filled by the effective area of the point 
splats. To compute the area of the point splat, we use a 
tangent disk assigned to each point splat. If the area of 
the triangle is greater than the effective area of the 
point splats, the algorithm sub-divides the surface into 

Figure 2. Structure of the extended point splatting 
system 



芸術科学会論文誌 Vol.6 No.1 pp.21-36 
 

25 

small patches. During conversion processing it can add 
transparency to polygon models. The normal vector of 
each point splat is computed using the polygonal 
topology of each vertex by smooth interpolation of the 
original vertices.  
Converting the volume data. Computation of the 
normal vectors for voxel data is performed by using 
3D edge detection algorithms such as the 3D Sobel 
operator. For each voxel, the local gradient vectors 
serve as the parameters for normal vector computation. 
All advanced volume rendering methods for 
classification and interpolation of the physical 
properties of voxels are used for definition of the color 
and opacity attributes of the voxels. The voxels with 
color, opacity and normal vectors are converted to 
points. The voxel coordinates serve as the position 
attributes of the point splats. 
The rendering system then builds a translucent 

shadow mapping table for each light source using the 
translucent mapping method. In the final step, we carry 
out simple object level visibility culling, hierarchical 
bucket sorting for back-to-front alpha blending, 
advanced shading for rendering-oriented points in the 
GPU and splatting-related computations. 
 

4.1 Translucent shadow mapping 
 
Translucency is important for realistic graphics since 
many substances in nature are translucent. This paper 
presents a new method for real-time rendering of 
translucent shadows for point splatting. The terms 
translucency and transparency are often used 
synonymously; however, translucent can be thought of 
as "seeing through frosted glass", while transparent can 
be thought of as "seeing through clear glass." In 
translucent mapping, multiple objects contribute to a 
pixel’s final color.  
Because the correct order of objects relative to the 

light sources is important to calculate the correct color, 
unsorted depth buffering is insufficient for shadow 
mapping. The fast rendering of the shadows of 
transparent and translucent objects, preferably in real 

time, has been the subject of research over the last few 
years, but so far this is generally an unsolved problem. 
To help solve this problem, we use a new approach 
that is different than those used in previously published 
algorithms. We use the spherical coordinate system 
(see Figure 3) as an alternative way to map all visible 
points in the 2D mapping table. The algorithm uses the 
point to light source mapping approach. Each 
translucent shadow mapping table (TSM) contains 
depth, opacity and visibility sorting information for 
given light sources. For a given camera position, the 
final lighting and shadow are generated by composing 
appropriate subsets of the mapping tables. 
This method allows us to render complex translucent 

objects with varying light and material properties. The 
translucent mapping algorithm divides large-scale data 
into a reliable small set of rendering-oriented subsets 
in the spherical coordinate system (see Figure 4). 
  

 
The algorithm takes a point set as input, calculates the 
polar and azimuth angles for each light source, and 
classifies each point by its direction from each light 
source. The results are stored in the mapping tables. 
Each light source has its own mapping table. The rows 
correspond to the polar angle and the columns to the 
azimuth angle. The size of the mapping table depends 
on the desired precision, which is specified by the user. 
To calculate the index of the mapping table for the 
point P (xp, yp, zp) in the mapping table for the light 
source P(xl, yl, zl), we need to translate the point 
coordinate to the world space of each light source (see 
Eq. 1). 

),,(),,( '
lplplpppp zzyyxxPzyxP −−−⇒  (1) 

 
The address of the cell on the destination mapping 
table is computed as follows (see Eq. 2,3). 

       (2) 

 

Figure 4. Translucent shadow mapping 
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where θ is the azimuthal angle (denoted λ when 
referred to as the longitude), φ is the polar angle 
(colatitude, equal to  φ=90°－δ  hereδ  is the 
latitude), polmax and polmin are the maximum and 
minimum angle formed between the z-axis and the line 

connecting 
'P  to the center of the spherical coordinate 

system, azmax and azmin are the present maximum and 
minimum angle formed between the x-axis and line 

connecting the projection of  
'P  onto the x-y plane to 

the origin of spherical coordinate system, kpol and kaz is 
the number of divisions of the mapping calculation in 
the polar and azimuthal angles. Each cell in the 
mapping table contains information about the nearest 
point in one specific direction. The other points, which 
are inside the visible region, are mapped as distance-
based sorted sub-lists in each direction. During the 
mapping process, distance-based insertion sorting 
occurs within the elements of a particular direction. 
The visible region is defined by Beer's law. Beer's law 
describes the empirical relationship that relates the 
absorption of light to the properties of the material 
through which the light is traveling. In essence, the law 
states that there is an exponential dependence between 
the transmission of light through a substance and the 
concentration of the substance, and also between the 
transmission and length of the material through which 
the light travels.   

 
We define the optical path as the extension of a ray’s 
passage through an translucent point, scattering as the 
redirection of direct illumination from a light source 
(implying single scattering) into the optical path and 
toward the view point, and extinction as the 

cumulative effect of both out scattering and absorption. 
The effect of point properties on the intensity of a light 
ray can be described by a differential equation (see Eq. 
4).  

xdxExdI rrr )()( += σ     (4) 
where xr  is the position of the point in three 
dimensions, )(xrσ  describes the extinction per unit 
length, and )(xE r

 describes the emission and 
scattering per unit length into the optical path. When b 
and E are proportional to one another and are functions 
solely of position x we can define optical depth τ  as 
follows (see Eq. 5)  

dtx)(r∫= στ     (5) 

Beer’s Law gives a physical solution to this simple 
model and gives us the transparency T over the optical 
path as a function of optical depth ( see Figure 5). 
There are several ways in which the law can be 
expressed (see Eqs. 6,7,8): 
 

lcA α=     (6) 

λ
πα k4

=     (7) 

lc

i

o e
I
I α−=             (8) 

 
where A is the measured absorbance, α is the 
wavelength-dependent absorption coefficient, l is the 
distance that the light travels through the material, c is 
the concentration, λ is the wavelength of the light, Ii is 
the intensity of the incident light, Io is the intensity of 
light after passing the object, and k is the extinction 
coefficient. We use the Eq.6 for our calculation of 
absorbance. In translucent shadow mapping, l  is 
assumed to be the size of the point splat, and c is 
assumed to be the opacity coefficient of the point. We 
assign a high (α=100) absorption coefficient to surface 
(opaque) points to ensure full absorbance of light at 
this point and to cast a shadow to the following points 
in its direction. The absorption coefficient of other 
translucent points is equal to one.  
The relationship between absorbance and transmittance 
is illustrated in the following diagram (see Figure 6):  
 So, if all the light passes through a point without any 
absorption, then the absorbance is zero, and the 
percent transmittance is 100%. If all the light is 
absorbed (total absorbance>2.0), then the percent 
transmittance is zero, and the absorption is infinite.  
 

 
Figure 5. Illustaration of Beer’s law. α is the absorption 

coefficient,l is the size of the material, c is the density,  Ii is the 
intensity of the incident light, Io is the intensity of light after 

passing the object. 
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 In translucent shadow mapping, the point nearest to 
the light source receives full light, and the next point 
receives reduced light. The intensity of reduced light is 
calculated by Eq.6. Using this method it is possible to 
calculate shadow of an arbitrary point. For an arbitrary 

point Pa, the total absorbance jA of points between the 

light source and the point Pa is obtained using Eq.9.  

∑
Ω∈

=
ji

iiij clA α                 (9) 

Where Ωj is the set of points which are nearer to the 
light source than the point Pa in a particular direction j 
of the ray, αi is the wavelength-dependent absorption 
coefficient of each point, li is the distance that the light 
travels through the point i, ci is the concentration of 
each point. If jA >2.0, the point Pa gets a full shadow, 

otherwise the point Pa gets the reduced light.  
The final shadow for each point is calculated as the 

sum of the light and shadows received from the 
different light sources. The steps proposed for the 
translucent mapping algorithm are as follows. 
Step 1. An empty mapping table is created for each 
light source. The 3D positions of the light sources 
become the centers of the spherical coordinate system. 
Step 2. The algorithm reads all the points and assigns 
corresponding values to each light table. For each 
point, it calculates the polar angle, the azimuth angle 
and the distance from the center of the sphere. 
Step 3. It finds the related cell in the mapping table 
and compares the distance value with the first element 
of the cell. 
a. If the distance value of the new element is less 

than that of the head element, this new element 
becomes the head element of the cell. 

b. If the distance value of the new element is greater 
than that of the head element, the algorithm 
calculates the absorbance of the leader point and 
finds its transmittance from the look-up table. If 
light can pass (see Eq. 9) to this element, it 
checks the next element on the linked-list of this 
cell. 

c. Step 3b will continue to process other points of 
this cell until a new element is inserted in the list, 
or until full absorbance reaches the visible limit 
(see Eq. 9) and the percent of the total of 
transmittance reaches to zero. The points behind 
of the transmittance region will get the full 
shadow. 

This mapping is repeated for all neighboring cells 
which cover this point. The point coverage of the 
mapping table cells is defined by the size of a point 
and its distance from the center. 
Figure 7 illustrates sample images of the shadow 
generation when light is placed on top of a scene and 
at the center of the outdoor scene.  

 
 
In Figure 17, we demonstrate the rendered results of 
different situations, were translucent and opaque 
objects located in different order from the light source. 
(a) shadow of opaque objects, (b) the translucent 

Figure 7. Shadow generation when (a) the light 
source is above the clouds, and (b) the light is in 
the center (the red spot) of the fountain. 

(a) 

(b) 
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Figure 6. The relationship between absorbance 
and transmittance 
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object is located between the light and opaque object 
(c) the opaque object is located between the light and 
translucent object (d) the light is located inside the 
translucent object. 
 
4.2 Sorting the points 
  
All direct volume splatting approaches for unstructured 
points must overcome two computational bottlenecks: 
point ordering and per splat processing. Sorting the 
points is necessary for correct blending. Since sorting 
significantly affects performance, an effective sorting 
algorithm is an essential part of point splatting.  
In this paper we present a sorting algorithm for point 

models that has a linear O(n) run-time and uses very 
little of the extra memory. Our algorithm rearranges 
the points in a back-to-front order from a given 
viewpoint. 
The most popular sorting methods in computer 
graphics applications are comparison-based sorting 
methods such as quick sort, merge sort and insertion 
sort. A point system can be sorted on the GPU using 
“odd-even merge sort” or “bitonic sort” parallel sorting 
algorithms. However, the GPU based sorting using the 
1024 x1024 texture requires processing in 100-210 
rendering passes.  
 We analyzed distribution-type sorting methods and 
discovered that the hierarchical bucket sorting method 
can be more effective than the comparison-based 
sorting. Bucket sorting is particularly suitable for point 
rendering, since (1) all the points which are located at 
the same distance from the viewpoint can be regarded 
as points with the same priority or as located in one 
slice and (2) the minimal point size can serve as the 
most precise thickness of the slice. Actually, our 
bucket sorting performs a distance based slicing of all 
points but does not sort all the points. So, it avoids 
sorting the  
points in the same slice. This important feature of not 
sorting all the points saves time, and the slicing 
operation is much faster than sorting.   
The basic elements used in the hierarchical bucket 

sorting of points are described in Figure 8. We use two 
hash tables: one table is used for the first-level 
approximation and the other table is used for the 
accurate slicing. Each hash table points to a set of 
buckets. The first level approximation table is used for 
slicing the space between the near clipping plane and 
the far clipping plane into N slices. Each bucket of the 
accurate buckets is used to partition the approximation 
stage into K slices. The total number of slices is equal 
to NxK. We use two sets of buckets to avoid 

undesirable memory consumption by the empty 
buckets. 
In our implementation the number of buckets (N) in 
these two bucket sets is the same and is defined by the 
desirable thickness of the slices, as shown in the 
following equations (see Eq.10,11).  
 

ε
)( nearfar

slices

PP
N

−
=    (10) 

[ ]slisesbuckets NN =    (11) 

 
where Pfar is the farthest point in the view frustum, 
Pnear is the nearest point in the view frustum, ε is the 
thickness of the slices. In a general case, ε can be 
defined by the Nyquist Sampling Theorem. In our 
rendering, we define ε as the minimum value of the 
size attribute for all points. When we rendered the 

Figure 9. Steps of the hierarchical bucket sorting  

Figure 8. Basic elements of hierarchical bucket 
sorting 
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outdoor scene with the artificial fountain (Figure 1 (a)), 
the perspective viewing volume was specified with the 
near clipping plane equal to 0.01 and the far clipping 
plane equal to 10. The size of the smallest point in our 
mixed 3D model data was equal to 0.001. The total 
number of slices was calculated as (10-0.01)/0.001 and 
was equal to 9990. To generate the 9990 slices we 
needed just 200 buckets: 100 buckets for the first-level 
approximation, and 100 buckets for the accurate 
slicing. The steps of our hierarchical bucket sorting 
algorithms are shown in Figure 9.  
Step 1. View culling eliminates groups of points 
outside the view frustum. Culling is achieved by 
simple view transformation of the point position and 
checking the point positions against the camera and 
projection setting. During the visibility culling 
operation, the algorithm calculates the minimum and 
maximum distance of the point clouds from the camera.  
Step 2. The algorithm traverses all the culled point 
splats and distributes them into the first-level 
approximation buckets. The points are assigned into 
buckets using a simple calculation based on the 
projected distance from the camera to the point. (see 
Eq. 12)  

)cos( int___int poanddirectionviewpocameradist angleDistP •= − (12) 

The intpocameraDist − value is calculated as distance 

between the camera position and the point position. 
The )cos( int___ poanddirectionviewangle  value is 

calculated using the dot product of the view direction 
vector and the point vector (from camera to point 
position) (see Figure 8). 
The algorithm divides all the points into bucketsN  
buckets based on the projected distance. The index of 
the first-level bucket (hash function) for given points is 
calculated by the following equation (see Eq. 13). 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−⋅

=
)(

)(
__

nearfar

neardistbuckets
bucketlf PP

PPNIndex        (13) 

where Pfar is the farthest point in the view frustum, 
Pnear is the nearest point in the view frustum, bucketsN  

is the number of buckets and distP  is the distance value 
of the point form camera position projected to the view 
vector.  
Step 3. In the last step, we distribute each non-empty 
bucket of the approximated bucket list into the 
accurate buckets. We use only additional one hash 
table with Nbuckets elements for accurate slicing to sort 
the buckets of the approximated partitioning.  
Algorithmically, the accurate bucketing algorithm 
works as follows: 

initialize the hash table for accurate bucketing  
read buckets of the first-level approximation buckets in 
back-to front order   
for each non-empty buckets of first distribution- b1[i] 
{  

for each point mapped to bucket b1[i]- p1[j] 
{ 
compute projected distance of p1[j]; 
define the index of accurate bucket 
using the projected distance as key 
value; 
insert to the bucket as first element; 
} 

read buckets of accurate buckets in back-to 
front order; 
add mapped point to general rendering list; 
clear accurate buckets for processing next 
bucket of first- level approximation;  

} 
render the general rendering list;  
First, the algorithm reads all the points of the last 
bucket of the approximation hash table. Then, it 
distributes the points of the last bucket into the 
accurate bucket. All the points of the non-empty 
buckets of this distribution become the rendering-
ordered slice of our point splatting. Then, it continues 
to read the approximation buckets in back-to-front 
order and generates the renderable slices. 
Hash function for accurate bucketing works similarly 
to first-level bucketing. We only need to change the 
range values of the buckets, i.e., instead of Pnear use 

bucketlfbucketsnear IndexNP __⋅⋅+ ε  and instead of Pfar  

use  )1( __ +⋅⋅+ bucketlfbucketsnear IndexNP ε , where  
ε is the predefined thickness of the slices. 
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The main advantages of our sorting are as follows: 
(1) It works in linear time O(n). The algorithm reads 

all the data sets once and the culled data set twice 
to produce the sorted slices.  

(2) It generates high-quality slicing using a small 
amount of extra memory. During sorting it 
eliminates all empty slices. 

In Figure 10 we show the rendered image after slicing 
the parts of the accurate slices. 
 
4.3 Shading on GPU 
 
In the past, Z-buffer graphics were configurable but 
not programmable. Graphics architectures are now 
highly programmable. High-level languages for the 
GPU encapsulate all of the computations for shaders in 
one piece of code. The point is one of the most suitable 
renderable objects in the GPU, since it can carry many 
useful attributes and points are naturally parallel. With 
rendering-oriented attributes, GPU shader programs 
can perform light calculations for different surface 
materials, mix the Phong shading with volume 
visualization, apply different textures to each point, 
and compute 2D rotations to the texture coordinates. 
We have implemented a texture-based point splatting 
renderer in the GPU. Figure 11 shows the shading 
pipeline of our rendering engine. The GPU shader 
requires four components: point position, normal 
vector, color vector, and attribute vector for each point 
splat. All rendering-oriented attributes are embedded 
in the attribute vector. Before rendering we need to 
bind all uniform parameters and textures (e.g., look-up 
tables, texture image for splatting) to the shader 
program. Depending on the varying parameters, the 
shader performs a series of geometric transformations 

such as defining the surfel orientations, sizing the 
texture mapping and normal interpolation. Then, it 
makes the shading of each point using the results of the 
transformation operation, color values and additional 
rendering values in the lookup table. The shading 
operation generates the different RGB and alpha 
values according the point splat types. Algorithmically, 
the point splatting in the vertex shader proceeds as 
follows: 
 
for each point splat p[i] 
{ 

compute splat orientation; 
define the address of texture mapping; 
project to the screen space; 
shade the splats; 
make shadow generation; 
set texture for splatting; 
make splatting; 

} 
 

  
In each step of the shading calculation, the shader gets 
the specific coefficients from the lookup tables. For 
example the shading operation uses the material 
lookup table, distance value and object lookup table to 
get specific coefficients for the Phong Shading and the 
shadow generation uses the shadow coefficient and 
the object lookup table for translucent shadow 
generation. 
In this implementation we did not use EWA filtering. 
We use several ready-to-use Gaussian kernel textures 
for splatting. The use of ready-to-use textures reduces 
the computational time, but requires very careful 
design of good texture. It is not possible to switch 
textures on a per-point basis while rendering. Thus, it 

Figure 10. Sample image, after alpha blending the 
first 6100 slices of the 9900 total slices. The light 

source was located on the front-right side.

Figure 11. The GPU shader for advanced point 
splatting 
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is necessary to combine different textures into one 3D 
texture.  
 
5. Implementation and results 
 
In this study, our goal was to illustrate the basic 
capability of our point splat rendering. In the future, 
we plan to optimize all the steps for high performance 
and high quality-rendering. 
The algorithms introduced in this paper are 

implemented in C++ and Cg shading languages. 
Images are rendered on a 3 GHz Pentium IV with an 
NVIDIA GeForce 6600 graphics card. We use 
OpenGL and its extensions for implementation of the 
vertex texture, multi target rendering and the Shader 
3.0 model of the programmable vertex and fragment 
processing.  
To demonstrate the potential for point rendering of 
mixed data sets, we selected several simple polygon, 
volume and point models. For the experiment, we used 
the Stanford Bunny and Dragon polygon model from 
the Stanford 3D Scanning Repository and the volume 
data of a baby, which is available in the public domain; 
we use the range scanner to take the 3D point cloud of 
our faculty building; and the particle model of clouds 
generated by Takeshita [32]. We generated simple 
volume and surface models of grass, tree and basin 
using the implicit functions. Using the interactively 
designed transfer function, we defined the color and 
opacity values of the cloud model. First, we used our 
point rendering algorithm to generate simple mixed 
images (see Figure 12). 
Figure 13 illustrates the benefits of the mixing 
rendering volume data with opaque and translucent 
surfaces for rendering simple objects such as an 
artificial eye. Medical imaging applications also can 
use mixed rendering (see Figure 14). The translucent 
shadow mapping method is used for self shadow 
generation and for surface extraction (see Figure 15). 
Also, we can show the components of mixed rendering 
and an effective combination for the visualization of 
outdoor scenes. (see Figure 16).  In Figure 16, we used 
the 3D point cloud and RGB texture data obtained by 
the range scanner to render the building. Therefore, the 
image of the building has some strange lighting effect 
derived from the original scanned RGB data. The all 
images are rendered to the framebuffer (screen) with 
resolution 600x500 pixels. By rendering those scenes 
we attempt to demonstrate the following features of 
our point splatting system: 
 This system can render polygon models (bunny, 
dragon), volume models ( CT scanned volume data 
of a baby), point clouds ( 3D point cloud of building 

obtained by the range scanner), particle models 
(cloud) and implicit surfaces (basin, fountain, tree, 
and grass). 

 Our system can be used for effectively visualization 
of  the mixed scenes ( see Figures 12, 16). 

 It can be used in different application areas such as 
medical applications ( see Figure 14), mixing real 
word objects with artificial objects (see Figure 16), 
visualization of translucent surfaces (see Figure 12 
(b))  and volumetric and surface visualization of 
implicit surfaces ( see Figure 13). 

 TSM method can be used for shadow generation 
( see Figures 7, 17) and for point based isosurface 
extraction (see Figure 15(a)). 

 Translucent and surface graphics increases visual 
inspection of images (see Figure 14). 

 Our point splatting system can render the 
unstructured point data (point and particle), implicit 
and polygon models in Figures 12,13,15, and regular 
grid data ( volume models in Figures 14, 15). We 
rendered regular grid volume data by converting 
them to the unstructured point data.  

The performance of our point splatting, translucent 
shadow mapping, and hierarchical bucket sorting 
algorithms is summarized in Table 1. We tested the 
performance by processing three different types of 
point clouds all opaque points (model of dragon), all 
translucent points (model of clouds) and mixed 
opaque-translucent points. We achieve the best 
performance when rendering all opaque points. 
Rendering translucent object gives the worst 
performance. The result shows that hierarchical bucket 
sorting and GPU based shading perform at an 
interactive rate in for million points. These algorithms  
work in linear time O(n) for both opaque and 
translucent points. Specially, the GPU based shading 
algorithm works almost nine times faster than its CPU 
analogue. It would be more impressive, if we used a 
more powerful graphics card. But the translucent 
shadow generation algorithm requires more time for 
mapping objects with high-level transparency (e.g., 
cloud). Because it uses insertion sorting for mapping 
points in each particular direction, the TSM shows the 
worst O(n2) time when all points are located along one 
ray direction from the light source and they are almost 
transparent. In mixed rendering the TSM shows its 
best time or near O(n) performance, when opaque 
elements are located in the front layers to the light 
source. As shown in Table 1, the TSM time 
(0.0853/437645) of the opaque dragon model is 1.75 
times faster than the TSM time (0.2088/624614) of the 
translucent cloud model.  
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Table 1. Performance of advanced point splatting 
Model Dragon 

(opaque) 

Cloud 
(translucent) 

Outdoor 
scene with 
fountain 

Number of  points 437645 624614 1841320 
Translucent Shadow 
Mapping (sec) 

0.0853 0.2088 0.3865 

Sorting (sec) 0.0522 0.0785 0.1902 
Shading (sec) 0.0243 0.0352 0.0876 
Rendering  5.2 fps 2.7 fps 1.5 fps 
 
6. Conclusion and future work 

 
The challenge of realistic interactive visualization of 
complex physical models opens up many new research 
directions in rendering, classification, and interpolation 
of the physical properties of points, for adaptive 
transparency control and for fully photorealistic 
depictions. 
Point rendering has been shown to be an effective 

method for the display of mixed 3D data. We believe 
that our work will contribute to future research in the 
field of computer graphics for several reasons. First, it 
is the first attempt to build a universal rendering 
engine to render mixed data sets, volume and 
polygonal primitives. Second, translucent mapping and 
bucket sorting can be used with any other rendering 
type as a high-speed method for accurate mapping of 
shadows, light, and collision detection. Third, all the 
methods used in our paper can be utilized by GPU-
based algorithms.  
In spite of its advantages, point splatting suffers 

several drawbacks.  
(1) The chief problem is associated with the memory 

requirements of point-type 3D data. To 
demonstrate the ability of our rendering system we 
use the thousands of points for each 3D model. 
The large amount of point data affect to the 
rendering speed. Also the numerous rendering-
oriented attributes absorb a large amount of 
memory.  

(2) The next set of problems is related to image 
quality. The image quality of point rendering is 
mostly depends from quality of models. In our 
demonstration, we mixed the high quality models 
(dragon, bunny, cloud, buildings) and the simple 
models (grass, tree, basin). Those results show us 
that we need to do more research on the image 
space EWA filtering and Phong splatting [3] for 
point geometry with modifications suitable for a 
transparent object. We will also need to use 

advanced lighting technologies, such as radiosity 
for global illumination, without losing the 
advantages of point rendering. 

(3) Other issues are related to the optimization of the 
preprocessing steps. In general, all preprocessing 
algorithms are implemented on the CPU by many 
researchers, but most of them are not optimized 
for the GPU implementation.  

For the future improvement, we are working on the 
following research areas. 

 Research on effective point conversation 
techniques for polygon and unstructured grid data.  

 Improvement of quality and performance of TSM  
 More research on additional rendering-oriented 

attributes for realistic point visualization and the 
compression methods of attributes. We also should 
investigate the question of what additional 
information we have to store with each point to 
accelerate spatial search.  

 GPU implementation of visibility sorting and TSM 
 Implementation of advanced illumination 

techniques within TSM 
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Figure 12. Visualization of mixed volume, point and 
polygon data. (a) mixed rendering (b) mixed object 
with different level of translucency (c) shading with 

different material values 

(a) 

(b) 

(c) 

Figure 13. Rendering of simple artificial eye. 
(a) surface rendering (b) mixed rendering 

(a) (b) 

Figure 14.Comparison of volume and surface 
rendering of medical data (a) volume rendering, (b) 
translucent volume rendering (c) surface extraction 

(d) mixed rendering 

(a) (b) 

(c) (d) 

Figure 15. Sample usage of the translucent shadow 
mapping table (a) translucent shadow mapping for 
surface extraction (b) translucent shadow mapping 

for generating self shadow 

(a) (b) 
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(a) (b) (c) (d) 

  
(e) (g) (f) (h) 

(i) 
Figure 16. Mixed rendering of artificial outdoor scene. (a) polygon model of dragon (b) 3D point cloud taken by 
range scanner (c) particle model of cloud (d) point based surface model generated by algebraic equation (e-h)
simple volume models generated by implicit functions – fountain, grass, tree and road  (h) mixed rendering of 
point, polygon and volume data. 
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(a) (b) 

(c)  (d) 
Figure 17. Different situations were translucent and opaque objects located in different order from the light source. (a) shadow of 
opaque objects, (b) the translucent object is located between the light and opaque object (c) the opaque object is located between the 
light and translucent objects (d) the light  is located inside the translucent object. The location of the light source is marked by red spot. 
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