
芸術科学会論文誌 Vol.6 No.1 pp.21-36

21

 Point Splatting Based on Translucent Shadow Mapping and Hierarchical
Bucket Sorting

Zorig Gunjee, Tadahiro Fujimoto, Norishige Chiba

Faculty of Engineering, Iwate University, Japan
E-mail: zorig@cg.cis.iwate-u.ac.jp, {fujimoto, nchiba}@cis.iwate-u.ac.jp

Abstract

In this paper we present our solution for shadow
generation, visibility sorting and GPU based shading
of translucent point data for point based rendering. Our
Translucent Shadow Mapping Algorithm uses a
spherical coordinate system and solves the distance-
based sorting, transparency calculation, shadow
mapping, omni-directional mapping and light intensity
attenuation problems in one step. We also propose a
novel algorithm for visibility sorting of unstructured
point data using the Hierarchical Bucket Sorting
approach. This algorithm uses less memory and
produces precise back-to-front ordered slices
compared to previous methods. Finally, the shading
calculations are performed in the GPU, using the
rendering-oriented attributes of the point splats.
Furthermore, we demonstrate the efficiency and
flexibility of our novel approach of point splatting by
showing several rendering results for visualizing
mixed 3D data sets.
Keywords: point splatting, translucent shadow
mapping, visibility sorting, GPU acceleration,
visualizing mixed 3D data

1. Introduction

Rendering is a fundamental component of computer
graphics. At the highest level of abstraction, rendering
describes the process of converting a description of a
three-dimensional scene into an image. In the early
years of computer graphics, research in rendering
focused on solving fundamental problems such as
determining which objects are visible from a given
viewpoint. As these problems have been solved (e.g.,
z-buffer techniques) and as richer and more realistic
scene descriptions have become available, modern
rendering has grown from the ideas from a broad range
of disciplines, including physics and astrophysics,
astronomy, biology, psychology and the study of
perception, and pure applied mathematics.
Our work addresses the solution of two major

problems of rendering complex scenes, which is still
challenging due shortage of existing algorithms: (1)
translucent shadow generation of point data and (2)
effective visualization of unstructured point data with
extended rendering oriented properties.
Points are clearly the simplest graphics primitive. In

some sense, they generalize pixels and voxels toward
irregular samples of geometry and appearance. The

Figure 1. Examples of the rendered images of mixed point, polygon and volume data. (a) Composition of the
particle model (cloud), the volume data (tree, grass, fountain, road), the polygon model (dragon) and the point
clouds (building, basin) in an outdoor scene, (b) mixing the surface model (skull) and volume data (head) in medical
imaging, (c) visualizing the volume data (retina), the translucent surface (iris) and the opaque surface (lens) in an
artificial eye.

(a) (b) (c)

芸術科学会論文誌 Vol.6 No.1 pp.21-36

22

conceptually most significant difference from triangle
representation is that points –much like voxels or
pixels – carry all the attributes needed for processing
and rendering. Until recently, limited programmability
has hampered the implementation of point-based
rendering algorithms on graphics hardware. However,
with the current generation of GPU, it is now possible
to control large part of the point rendering process at
the interactive rate. Current point primitives store only
limited information about their immediate locality,
such as their position in 3D space, the normal vector,
the bounding ball, and the tangent plane disk. However,
our point splatting system uses many other attributes to
render different models. Splatting-based rendering
techniques are currently the best choice for efficient
high-quality rendering of point based geometries.
Translucency is also an important graphics effect that

can be used to significantly increase the realism of the
rendered scene to enable more effective visual
inspection. Rendering of translucent objects is realized
by a process called alpha blending in most modern
graphics systems. For correct visualization, all objects
must be “blended” in back-to-front order. This can be
achieved either by sorting the fragments at each pixel
in image space or by sorting the points in object space.
Our bucket sorting algorithm performs a distance
based slicing of all points in object space. It avoids
sorting the points in the same slice. This important
feature of not sorting all the points saves time, and the
slicing operation performs much faster than sorting all
points.

The main steps of proposed point splatting system
are as follows:
Step 1. The first step in the rendering engine is
preprocessing, which may include conversion to a
common format (points with rendering-oriented
attributes), coordinate transformation to the world
coordinate space, data analysis for future processing,
subdivision of polygonal meshes to adapt the point
densities, and normal vector computation.
Step 2. The rendering system uses the translucent
shadow mapping method to build a translucent shadow
mapping table for each light source.
Step 3. In the final step, the following are carried out:
simple object level visibility culling, hierarchical
bucket sorting for back-to-front alpha blending,
advanced shading for rendering-oriented points in the
GPU and splatting-related computations.
Our main contributions are as follows:
 We use extended rendering-oriented attributes for

the point splats. The shading of each splat is
processed differently on GPU, depending on the
additional properties of each splat.

 We propose a novel algorithm for visibility
sorting using the Hierarchical Bucket Sorting
approach.

 To solve the translucent shadow-mapping
problem, we use a spherical coordinate system
and it solves the distance-based sorting,
transparency calculation, shadow mapping, omni-
directional mapping and light intensity
attenuation problems in one step. The proposed
algorithm works even in the difficult situation
where the light sources are inside the translucent
object.

In other words, the proposed point splatting system
can render translucent objects with the same efficiency
as opaque objects. It can render polygon data, particle
models, point clouds and volume data. Moreover, it
handles mixed data types well, which is a
problematical task for other rendering methods.
In Figure 1 we show several images, in which the
mixed data visualization provides a better perception
of the relationships between the different components
of the images.
In this work we also attempt to demonstrate the

benefits of our point splatting system to solve the most
difficult problems of rendering mixed data objects
such as (1) rendering unstructured point data, (2)
shadow generation of translucent point objects and (3)
mixed shading of surface and volume data on the GPU.
 The rest of paper is organized as follows: examination
of related work is described in Section 2, extended
attributes for mixed rendering surface and volume
points are briefly described in Section 3, the rendering
pipeline and major modules of the system, namely
translucent shadow mapping, sorting and shading, are
presented in Section 4. Section 5 gives some
experimental results, followed by the conclusion in
Section 6.

2. Related work

The work presented in this paper is closely related to
the following sub-domains in computer graphics: point
splatting, translucent shadow mapping, visibility
sorting, rendering of unstructured grids and mixed
surface and volume rendering.
Point splatting. The use of points as display
primitives was first proposed by Levoy and Whitted
[1]. Currently, many researchers have demonstrated
that a splatting approach is doubtless the best choice
for high-quality and efficient point-based rendering [2,
3, 4].
Splatting is a popular algorithm for direct volume

rendering that was first proposed by Westover [5].

芸術科学会論文誌 Vol.6 No.1 pp.21-36

23

Zwicker et al. [6] introduced EWA (elliptical weighted
average) filtering to avoid the aliasing of surface
textures and extended his framework to volume
splatting. To accelerate volume splatting Chen et al.
[7] proposed a hardware-accelerated adaptive EWA
volume splatting algorithm. Although research on
surface splatting has produced very impressive results,
we face numerous open research problems in the
translucent point based graphics. In this work we
investigate the question of (1) what additional
information we have to store with each point, (2) how
to effectively generate the shadow of points with
different levels of translucency and (3) what kind of
sorting method is more optimal for alpha blending the
unstructured point clouds.
Translucent shadow mapping. In recent years, both
Williams’ original Z-buffer shadow mapping algorithm
[8] and Crow’s shadow volumes [9] have gone through
many variations. Hasenfratz et al. [10] made a
broader survey of real-time soft shadow algorithms.
Unfortunately, most shadow generation methods still
do not scale well to scenes with translucent objects and
most have difficulties with omni-directional lights.
Several papers propose a method for rendering
translucent objects. Dachsbacher et al. [11] use two
simultaneous rendering targets to map translucent
objects. Recently, many authors have used the multi-
pass shadow mapping or the depth peeling [12] method
and the ray casting algorithm [13] to generate
translucent shadow maps. Even though some of those
translucency rendering and shadow generation
methods can produce sufficient results, most of them
still have challenging problems such as the
performance penalty due their multipass nature [12]
and the problem of undersampling [13].
Our method differs from those methods in the

following ways.
 We implement the spherical mapping techniques on

shadow mapping. It allows us to solve the omni
directional light problems of the shadow mapping.

 Our algorithm helps to solve distance based sorting,
transparency calculation, shadow mapping, light
attenuation, collision detection and early ray
termination problems.

 Unlike the other shadow mapping tables, our
translucent mapping table can stores the full
information of mapped points with rendering
oriented attributes for physically correct shadows
generation.

Visibility sorting. A large volume of research has
been devoted to visibility sorting due to its importance
in computer graphics. In more recent work,
Govindaraju et al. [14] describe an efficient method for
visibility sorting by performing image space occlusion

computations. Callahan et al. [15] propose a hardware
assisted visibility sorting algorithm that operates in
both object space and image space. Some authors offer
GPU-based parallel sorting of points [16, 17] for
correct alpha blended rendering. We introduce the
view aligned slicing method based on the hierarchical
bucket sorting algorithm, which works in linear
computational time. The work most relevant to our
method is presented by Yagel et al. [18] and Chopra et
al. [19]. Our algorithm uses less memory and produces
precise slices compared to the previous methods.
Rendering of unstructured grids. Rendering of
unstructured grids has been a topic of much research,
and major advances have been made in performing this
rendering efficiency. Two major techniques are
popular in volume rendering algorithms for
unstructured grids: ray-casting and splatting. The ray-
casting approaches [20, 21, 22] store the grids in
texture memory and performs cell traversal for each
ray in the shader program. Splatting methods such as
the projected tetrahedral method [23, 24, 25] have
become one of most popular methods for rendering
unstructured grids. All these approaches must
overcome two computational bottlenecks: cell ordering
and per cell processing, both of which are not easily
solved. Since visibility ordering is essential for volume
rendering unstructured grids via cell projection, many
techniques have been developed that order the
tetrahedra [26, 27]. The most recent work by Callahan
et al [15] addresses to depth sorting by computing a
partial ordering on the CPU and then using the GPU
for help finish the sort. In this paper we are mainly
focused on the accurate sorting of points (it is suitable
only for point data) and shading each point splats
differently on the GPU.
Mixing point clouds, polygons and volume data.
Earlier implementations of visualization for mixed 3D
data focused primarily on multi-pass hybrid methods.
Levoy developed a hybrid ray tracing algorithm [28].
He modified the conventional ray tracer for handling
polygon and volume data. Kreeger et al. [29] proposed
a rendering approach based on 3D texture mapping.
Roettger et al. [30] used 3D texture mapping and 2D
texture mapping to combine projected tetrahedral
volumes with isosurfaces. More recently, some
researchers have developed hybrid rendering methods
[31]. All of those works show numerous research
problems to render the mixed scenes, such as the most
effective way (multipass methods, hybrid methods or
methods based on common presentation), illumination
(including shadow) models of objects with different
physical characteristics, and appropriate data structures
for shading the mixed scenes.

芸術科学会論文誌 Vol.6 No.1 pp.21-36

24

In this paper, however, we present a completely
different approach to rendering mixed data. We are
primarily interested in the mixed rendering of
unstructured data and in the improvement of
visualization using translucent shadow mapping and
GPU based shading. We chose the point model as the
most suitable model for shared representation of
polygon, volume and point data for rendering mixed
objects. Although, much excellent research work has
been performed on point splatting such as surface
splatting [2, 3, 4] and volume splatting [19, 6]. We did
not find appropriate studie on mixed splatting. The
point type of representation and the splatting type of
rendering meet a number of criteria that are important
for mixed rendering of polygon, volume and point
models.

 The conversion from a volumetric data or a mesh
model to a point cloud in 3D space is
conceptually and geometrically simple. In most
cases we just replace a vertex or a voxel by a
point splat. The important operation in converting
the polygonal models into point models is the
subdivision of the surface into finer-level
triangles. The rendering-oriented attributes, such
as the normal vector, the color value and the
physical values can come from the original
modeling data.

 Rendering-oriented point splats have unique
flexibility in that they can form translucent
(volume splatting) and opaque (surface splatting)
splats. They can depict volume data, point clouds
and micro objects with specific material
properties.

3. Point attributes for rendering mixed 3D
data.

Point-based rendering schemes have evolved as an
efficient alternative to triangle-based rendering. We
chose the point splatting method for mixed rendering
due to (1) the efficiency in rendering complex
environments, (2) zero connectivity for efficient
streaming for GPU-based stream processing, and (3)
productivity in visualizing both surface and volume
data.
Current point primitives store only limited

information about their immediate locality, such as
their position in 3D space, the normal vector, the
bounding ball, and the tangent plane disk. However,
our point splatting uses many other attributes to render
different models.
In our rendering system, we use the following data
structures for rendering-oriented point splats.

 3D geometrical attributes (position, normal
vector, local differential geometry information)

 Color attributes (color, opacity, material ID,
texture ID, shadow coefficient)

 Other values (object ID, size, physical value)
For some attributes we define a separate lookup table
and combine the corresponding values during the point
rendering of the surface and volume data. We call our
primitive a “rendering-oriented particle” because it
presents a small point with additional physical values.

4. The rendering pipeline

The proposed point splatting pipeline is illustrated in
Figure 2.

The first step in the rendering engine is preprocessing,
which may include conversion to a common format
(points with rendering-oriented attributes), coordinate
transformation to the world coordinate space, data
analysis for future processing, subdivision of
polygonal meshes to adapt the point densities, and
normal vector computation.
Converting the polygonal models. Compared with
the point cloud model, a polygonal model contains
additional topological information that defines the
neighboring relationship and order among points. The
most important operation in the preprocessing step in
rendering the polygonal models is the subdivision of
the surface into finer-level triangles, where the
triangles can be filled by the effective area of the point
splats. To compute the area of the point splat, we use a
tangent disk assigned to each point splat. If the area of
the triangle is greater than the effective area of the
point splats, the algorithm sub-divides the surface into

Figure 2. Structure of the extended point splatting
system

芸術科学会論文誌 Vol.6 No.1 pp.21-36

25

small patches. During conversion processing it can add
transparency to polygon models. The normal vector of
each point splat is computed using the polygonal
topology of each vertex by smooth interpolation of the
original vertices.
Converting the volume data. Computation of the
normal vectors for voxel data is performed by using
3D edge detection algorithms such as the 3D Sobel
operator. For each voxel, the local gradient vectors
serve as the parameters for normal vector computation.
All advanced volume rendering methods for
classification and interpolation of the physical
properties of voxels are used for definition of the color
and opacity attributes of the voxels. The voxels with
color, opacity and normal vectors are converted to
points. The voxel coordinates serve as the position
attributes of the point splats.
The rendering system then builds a translucent

shadow mapping table for each light source using the
translucent mapping method. In the final step, we carry
out simple object level visibility culling, hierarchical
bucket sorting for back-to-front alpha blending,
advanced shading for rendering-oriented points in the
GPU and splatting-related computations.

4.1 Translucent shadow mapping

Translucency is important for realistic graphics since
many substances in nature are translucent. This paper
presents a new method for real-time rendering of
translucent shadows for point splatting. The terms
translucency and transparency are often used
synonymously; however, translucent can be thought of
as "seeing through frosted glass", while transparent can
be thought of as "seeing through clear glass." In
translucent mapping, multiple objects contribute to a
pixel’s final color.
Because the correct order of objects relative to the

light sources is important to calculate the correct color,
unsorted depth buffering is insufficient for shadow
mapping. The fast rendering of the shadows of
transparent and translucent objects, preferably in real

time, has been the subject of research over the last few
years, but so far this is generally an unsolved problem.
To help solve this problem, we use a new approach
that is different than those used in previously published
algorithms. We use the spherical coordinate system
(see Figure 3) as an alternative way to map all visible
points in the 2D mapping table. The algorithm uses the
point to light source mapping approach. Each
translucent shadow mapping table (TSM) contains
depth, opacity and visibility sorting information for
given light sources. For a given camera position, the
final lighting and shadow are generated by composing
appropriate subsets of the mapping tables.
This method allows us to render complex translucent

objects with varying light and material properties. The
translucent mapping algorithm divides large-scale data
into a reliable small set of rendering-oriented subsets
in the spherical coordinate system (see Figure 4).

The algorithm takes a point set as input, calculates the
polar and azimuth angles for each light source, and
classifies each point by its direction from each light
source. The results are stored in the mapping tables.
Each light source has its own mapping table. The rows
correspond to the polar angle and the columns to the
azimuth angle. The size of the mapping table depends
on the desired precision, which is specified by the user.
To calculate the index of the mapping table for the
point P (xp, yp, zp) in the mapping table for the light
source P(xl, yl, zl), we need to translate the point
coordinate to the world space of each light source (see
Eq. 1).

),,(),,('
lplplpppp zzyyxxPzyxP −−−⇒ (1)

The address of the cell on the destination mapping
table is computed as follows (see Eq. 2,3).

 (2)

Figure 4. Translucent shadow mapping

⎥
⎦

⎤
⎢
⎣

⎡
−⋅

⋅⋅−
=

)(
180)(

minmax

min

polpol
kpol

Index pol
col π

φFigure 3. Spherical coordinate system

芸術科学会論文誌 Vol.6 No.1 pp.21-36

26

⎥
⎦

⎤
⎢
⎣

⎡
−⋅

⋅⋅−
=

)(
180)(

minmax

min

azaz
kazIndex az

row π
θ

 (3)

where θ is the azimuthal angle (denoted λ when
referred to as the longitude), φ is the polar angle
(colatitude, equal to φ=90°－δ hereδ is the
latitude), polmax and polmin are the maximum and
minimum angle formed between the z-axis and the line

connecting
'P to the center of the spherical coordinate

system, azmax and azmin are the present maximum and
minimum angle formed between the x-axis and line

connecting the projection of
'P onto the x-y plane to

the origin of spherical coordinate system, kpol and kaz is
the number of divisions of the mapping calculation in
the polar and azimuthal angles. Each cell in the
mapping table contains information about the nearest
point in one specific direction. The other points, which
are inside the visible region, are mapped as distance-
based sorted sub-lists in each direction. During the
mapping process, distance-based insertion sorting
occurs within the elements of a particular direction.
The visible region is defined by Beer's law. Beer's law
describes the empirical relationship that relates the
absorption of light to the properties of the material
through which the light is traveling. In essence, the law
states that there is an exponential dependence between
the transmission of light through a substance and the
concentration of the substance, and also between the
transmission and length of the material through which
the light travels.

We define the optical path as the extension of a ray’s
passage through an translucent point, scattering as the
redirection of direct illumination from a light source
(implying single scattering) into the optical path and
toward the view point, and extinction as the

cumulative effect of both out scattering and absorption.
The effect of point properties on the intensity of a light
ray can be described by a differential equation (see Eq.
4).

xdxExdI rrr)()(+= σ (4)
where xr is the position of the point in three
dimensions,)(xrσ describes the extinction per unit
length, and)(xE r

 describes the emission and
scattering per unit length into the optical path. When b
and E are proportional to one another and are functions
solely of position x we can define optical depth τ as
follows (see Eq. 5)

dtx)(r∫= στ (5)

Beer’s Law gives a physical solution to this simple
model and gives us the transparency T over the optical
path as a function of optical depth (see Figure 5).
There are several ways in which the law can be
expressed (see Eqs. 6,7,8):

lcA α= (6)

λ
πα k4

= (7)

lc

i

o e
I
I α−= (8)

where A is the measured absorbance, α is the
wavelength-dependent absorption coefficient, l is the
distance that the light travels through the material, c is
the concentration, λ is the wavelength of the light, Ii is
the intensity of the incident light, Io is the intensity of
light after passing the object, and k is the extinction
coefficient. We use the Eq.6 for our calculation of
absorbance. In translucent shadow mapping, l is
assumed to be the size of the point splat, and c is
assumed to be the opacity coefficient of the point. We
assign a high (α=100) absorption coefficient to surface
(opaque) points to ensure full absorbance of light at
this point and to cast a shadow to the following points
in its direction. The absorption coefficient of other
translucent points is equal to one.
The relationship between absorbance and transmittance
is illustrated in the following diagram (see Figure 6):
 So, if all the light passes through a point without any
absorption, then the absorbance is zero, and the
percent transmittance is 100%. If all the light is
absorbed (total absorbance>2.0), then the percent
transmittance is zero, and the absorption is infinite.

Figure 5. Illustaration of Beer’s law. α is the absorption

coefficient,l is the size of the material, c is the density, Ii is the
intensity of the incident light, Io is the intensity of light after

passing the object.

芸術科学会論文誌 Vol.6 No.1 pp.21-36

27

 In translucent shadow mapping, the point nearest to
the light source receives full light, and the next point
receives reduced light. The intensity of reduced light is
calculated by Eq.6. Using this method it is possible to
calculate shadow of an arbitrary point. For an arbitrary

point Pa, the total absorbance jA of points between the

light source and the point Pa is obtained using Eq.9.

∑
Ω∈

=
ji

iiij clA α (9)

Where Ωj is the set of points which are nearer to the
light source than the point Pa in a particular direction j
of the ray, αi is the wavelength-dependent absorption
coefficient of each point, li is the distance that the light
travels through the point i, ci is the concentration of
each point. If jA >2.0, the point Pa gets a full shadow,

otherwise the point Pa gets the reduced light.
The final shadow for each point is calculated as the

sum of the light and shadows received from the
different light sources. The steps proposed for the
translucent mapping algorithm are as follows.
Step 1. An empty mapping table is created for each
light source. The 3D positions of the light sources
become the centers of the spherical coordinate system.
Step 2. The algorithm reads all the points and assigns
corresponding values to each light table. For each
point, it calculates the polar angle, the azimuth angle
and the distance from the center of the sphere.
Step 3. It finds the related cell in the mapping table
and compares the distance value with the first element
of the cell.
a. If the distance value of the new element is less

than that of the head element, this new element
becomes the head element of the cell.

b. If the distance value of the new element is greater
than that of the head element, the algorithm
calculates the absorbance of the leader point and
finds its transmittance from the look-up table. If
light can pass (see Eq. 9) to this element, it
checks the next element on the linked-list of this
cell.

c. Step 3b will continue to process other points of
this cell until a new element is inserted in the list,
or until full absorbance reaches the visible limit
(see Eq. 9) and the percent of the total of
transmittance reaches to zero. The points behind
of the transmittance region will get the full
shadow.

This mapping is repeated for all neighboring cells
which cover this point. The point coverage of the
mapping table cells is defined by the size of a point
and its distance from the center.
Figure 7 illustrates sample images of the shadow
generation when light is placed on top of a scene and
at the center of the outdoor scene.

In Figure 17, we demonstrate the rendered results of
different situations, were translucent and opaque
objects located in different order from the light source.
(a) shadow of opaque objects, (b) the translucent

Figure 7. Shadow generation when (a) the light
source is above the clouds, and (b) the light is in
the center (the red spot) of the fountain.

(a)

(b)

0 10 20 30 40 50 60 70 80 90 100

2.0 1.5 1.0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.00

Absorbance

Transmittance (%)

0 10 20 30 40 50 60 70 80 90 100

2.0 1.5 1.0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.00

0 10 20 30 40 50 60 70 80 90 100

2.0 1.5 1.0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.00

Absorbance

Transmittance (%)

Figure 6. The relationship between absorbance
and transmittance

芸術科学会論文誌 Vol.6 No.1 pp.21-36

28

object is located between the light and opaque object
(c) the opaque object is located between the light and
translucent object (d) the light is located inside the
translucent object.

4.2 Sorting the points

All direct volume splatting approaches for unstructured
points must overcome two computational bottlenecks:
point ordering and per splat processing. Sorting the
points is necessary for correct blending. Since sorting
significantly affects performance, an effective sorting
algorithm is an essential part of point splatting.
In this paper we present a sorting algorithm for point

models that has a linear O(n) run-time and uses very
little of the extra memory. Our algorithm rearranges
the points in a back-to-front order from a given
viewpoint.
The most popular sorting methods in computer
graphics applications are comparison-based sorting
methods such as quick sort, merge sort and insertion
sort. A point system can be sorted on the GPU using
“odd-even merge sort” or “bitonic sort” parallel sorting
algorithms. However, the GPU based sorting using the
1024 x1024 texture requires processing in 100-210
rendering passes.
 We analyzed distribution-type sorting methods and
discovered that the hierarchical bucket sorting method
can be more effective than the comparison-based
sorting. Bucket sorting is particularly suitable for point
rendering, since (1) all the points which are located at
the same distance from the viewpoint can be regarded
as points with the same priority or as located in one
slice and (2) the minimal point size can serve as the
most precise thickness of the slice. Actually, our
bucket sorting performs a distance based slicing of all
points but does not sort all the points. So, it avoids
sorting the
points in the same slice. This important feature of not
sorting all the points saves time, and the slicing
operation is much faster than sorting.
The basic elements used in the hierarchical bucket

sorting of points are described in Figure 8. We use two
hash tables: one table is used for the first-level
approximation and the other table is used for the
accurate slicing. Each hash table points to a set of
buckets. The first level approximation table is used for
slicing the space between the near clipping plane and
the far clipping plane into N slices. Each bucket of the
accurate buckets is used to partition the approximation
stage into K slices. The total number of slices is equal
to NxK. We use two sets of buckets to avoid

undesirable memory consumption by the empty
buckets.
In our implementation the number of buckets (N) in
these two bucket sets is the same and is defined by the
desirable thickness of the slices, as shown in the
following equations (see Eq.10,11).

ε
)(nearfar

slices

PP
N

−
= (10)

[]slisesbuckets NN = (11)

where Pfar is the farthest point in the view frustum,
Pnear is the nearest point in the view frustum, ε is the
thickness of the slices. In a general case, ε can be
defined by the Nyquist Sampling Theorem. In our
rendering, we define ε as the minimum value of the
size attribute for all points. When we rendered the

Figure 9. Steps of the hierarchical bucket sorting

Figure 8. Basic elements of hierarchical bucket
sorting

芸術科学会論文誌 Vol.6 No.1 pp.21-36

29

outdoor scene with the artificial fountain (Figure 1 (a)),
the perspective viewing volume was specified with the
near clipping plane equal to 0.01 and the far clipping
plane equal to 10. The size of the smallest point in our
mixed 3D model data was equal to 0.001. The total
number of slices was calculated as (10-0.01)/0.001 and
was equal to 9990. To generate the 9990 slices we
needed just 200 buckets: 100 buckets for the first-level
approximation, and 100 buckets for the accurate
slicing. The steps of our hierarchical bucket sorting
algorithms are shown in Figure 9.
Step 1. View culling eliminates groups of points
outside the view frustum. Culling is achieved by
simple view transformation of the point position and
checking the point positions against the camera and
projection setting. During the visibility culling
operation, the algorithm calculates the minimum and
maximum distance of the point clouds from the camera.
Step 2. The algorithm traverses all the culled point
splats and distributes them into the first-level
approximation buckets. The points are assigned into
buckets using a simple calculation based on the
projected distance from the camera to the point. (see
Eq. 12)

)cos(int___int poanddirectionviewpocameradist angleDistP •= − (12)

The intpocameraDist − value is calculated as distance

between the camera position and the point position.
The)cos(int___ poanddirectionviewangle value is

calculated using the dot product of the view direction
vector and the point vector (from camera to point
position) (see Figure 8).
The algorithm divides all the points into bucketsN
buckets based on the projected distance. The index of
the first-level bucket (hash function) for given points is
calculated by the following equation (see Eq. 13).

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−⋅

=
)(

)(
__

nearfar

neardistbuckets
bucketlf PP

PPNIndex (13)

where Pfar is the farthest point in the view frustum,
Pnear is the nearest point in the view frustum, bucketsN

is the number of buckets and distP is the distance value
of the point form camera position projected to the view
vector.
Step 3. In the last step, we distribute each non-empty
bucket of the approximated bucket list into the
accurate buckets. We use only additional one hash
table with Nbuckets elements for accurate slicing to sort
the buckets of the approximated partitioning.
Algorithmically, the accurate bucketing algorithm
works as follows:

initialize the hash table for accurate bucketing
read buckets of the first-level approximation buckets in
back-to front order
for each non-empty buckets of first distribution- b1[i]
{

for each point mapped to bucket b1[i]- p1[j]
{
compute projected distance of p1[j];
define the index of accurate bucket
using the projected distance as key
value;
insert to the bucket as first element;
}

read buckets of accurate buckets in back-to
front order;
add mapped point to general rendering list;
clear accurate buckets for processing next
bucket of first- level approximation;

}
render the general rendering list;
First, the algorithm reads all the points of the last
bucket of the approximation hash table. Then, it
distributes the points of the last bucket into the
accurate bucket. All the points of the non-empty
buckets of this distribution become the rendering-
ordered slice of our point splatting. Then, it continues
to read the approximation buckets in back-to-front
order and generates the renderable slices.
Hash function for accurate bucketing works similarly
to first-level bucketing. We only need to change the
range values of the buckets, i.e., instead of Pnear use

bucketlfbucketsnear IndexNP __⋅⋅+ ε and instead of Pfar

use)1(__ +⋅⋅+ bucketlfbucketsnear IndexNP ε , where
ε is the predefined thickness of the slices.

芸術科学会論文誌 Vol.6 No.1 pp.21-36

30

The main advantages of our sorting are as follows:
(1) It works in linear time O(n). The algorithm reads

all the data sets once and the culled data set twice
to produce the sorted slices.

(2) It generates high-quality slicing using a small
amount of extra memory. During sorting it
eliminates all empty slices.

In Figure 10 we show the rendered image after slicing
the parts of the accurate slices.

4.3 Shading on GPU

In the past, Z-buffer graphics were configurable but
not programmable. Graphics architectures are now
highly programmable. High-level languages for the
GPU encapsulate all of the computations for shaders in
one piece of code. The point is one of the most suitable
renderable objects in the GPU, since it can carry many
useful attributes and points are naturally parallel. With
rendering-oriented attributes, GPU shader programs
can perform light calculations for different surface
materials, mix the Phong shading with volume
visualization, apply different textures to each point,
and compute 2D rotations to the texture coordinates.
We have implemented a texture-based point splatting
renderer in the GPU. Figure 11 shows the shading
pipeline of our rendering engine. The GPU shader
requires four components: point position, normal
vector, color vector, and attribute vector for each point
splat. All rendering-oriented attributes are embedded
in the attribute vector. Before rendering we need to
bind all uniform parameters and textures (e.g., look-up
tables, texture image for splatting) to the shader
program. Depending on the varying parameters, the
shader performs a series of geometric transformations

such as defining the surfel orientations, sizing the
texture mapping and normal interpolation. Then, it
makes the shading of each point using the results of the
transformation operation, color values and additional
rendering values in the lookup table. The shading
operation generates the different RGB and alpha
values according the point splat types. Algorithmically,
the point splatting in the vertex shader proceeds as
follows:

for each point splat p[i]
{

compute splat orientation;
define the address of texture mapping;
project to the screen space;
shade the splats;
make shadow generation;
set texture for splatting;
make splatting;

}

In each step of the shading calculation, the shader gets
the specific coefficients from the lookup tables. For
example the shading operation uses the material
lookup table, distance value and object lookup table to
get specific coefficients for the Phong Shading and the
shadow generation uses the shadow coefficient and
the object lookup table for translucent shadow
generation.
In this implementation we did not use EWA filtering.
We use several ready-to-use Gaussian kernel textures
for splatting. The use of ready-to-use textures reduces
the computational time, but requires very careful
design of good texture. It is not possible to switch
textures on a per-point basis while rendering. Thus, it

Figure 10. Sample image, after alpha blending the
first 6100 slices of the 9900 total slices. The light

source was located on the front-right side.

Figure 11. The GPU shader for advanced point
splatting

芸術科学会論文誌 Vol.6 No.1 pp.21-36

31

is necessary to combine different textures into one 3D
texture.

5. Implementation and results

In this study, our goal was to illustrate the basic
capability of our point splat rendering. In the future,
we plan to optimize all the steps for high performance
and high quality-rendering.
The algorithms introduced in this paper are

implemented in C++ and Cg shading languages.
Images are rendered on a 3 GHz Pentium IV with an
NVIDIA GeForce 6600 graphics card. We use
OpenGL and its extensions for implementation of the
vertex texture, multi target rendering and the Shader
3.0 model of the programmable vertex and fragment
processing.
To demonstrate the potential for point rendering of
mixed data sets, we selected several simple polygon,
volume and point models. For the experiment, we used
the Stanford Bunny and Dragon polygon model from
the Stanford 3D Scanning Repository and the volume
data of a baby, which is available in the public domain;
we use the range scanner to take the 3D point cloud of
our faculty building; and the particle model of clouds
generated by Takeshita [32]. We generated simple
volume and surface models of grass, tree and basin
using the implicit functions. Using the interactively
designed transfer function, we defined the color and
opacity values of the cloud model. First, we used our
point rendering algorithm to generate simple mixed
images (see Figure 12).
Figure 13 illustrates the benefits of the mixing
rendering volume data with opaque and translucent
surfaces for rendering simple objects such as an
artificial eye. Medical imaging applications also can
use mixed rendering (see Figure 14). The translucent
shadow mapping method is used for self shadow
generation and for surface extraction (see Figure 15).
Also, we can show the components of mixed rendering
and an effective combination for the visualization of
outdoor scenes. (see Figure 16). In Figure 16, we used
the 3D point cloud and RGB texture data obtained by
the range scanner to render the building. Therefore, the
image of the building has some strange lighting effect
derived from the original scanned RGB data. The all
images are rendered to the framebuffer (screen) with
resolution 600x500 pixels. By rendering those scenes
we attempt to demonstrate the following features of
our point splatting system:
 This system can render polygon models (bunny,
dragon), volume models (CT scanned volume data
of a baby), point clouds (3D point cloud of building

obtained by the range scanner), particle models
(cloud) and implicit surfaces (basin, fountain, tree,
and grass).

 Our system can be used for effectively visualization
of the mixed scenes (see Figures 12, 16).

 It can be used in different application areas such as
medical applications (see Figure 14), mixing real
word objects with artificial objects (see Figure 16),
visualization of translucent surfaces (see Figure 12
(b)) and volumetric and surface visualization of
implicit surfaces (see Figure 13).

 TSM method can be used for shadow generation
(see Figures 7, 17) and for point based isosurface
extraction (see Figure 15(a)).

 Translucent and surface graphics increases visual
inspection of images (see Figure 14).

 Our point splatting system can render the
unstructured point data (point and particle), implicit
and polygon models in Figures 12,13,15, and regular
grid data (volume models in Figures 14, 15). We
rendered regular grid volume data by converting
them to the unstructured point data.

The performance of our point splatting, translucent
shadow mapping, and hierarchical bucket sorting
algorithms is summarized in Table 1. We tested the
performance by processing three different types of
point clouds all opaque points (model of dragon), all
translucent points (model of clouds) and mixed
opaque-translucent points. We achieve the best
performance when rendering all opaque points.
Rendering translucent object gives the worst
performance. The result shows that hierarchical bucket
sorting and GPU based shading perform at an
interactive rate in for million points. These algorithms
work in linear time O(n) for both opaque and
translucent points. Specially, the GPU based shading
algorithm works almost nine times faster than its CPU
analogue. It would be more impressive, if we used a
more powerful graphics card. But the translucent
shadow generation algorithm requires more time for
mapping objects with high-level transparency (e.g.,
cloud). Because it uses insertion sorting for mapping
points in each particular direction, the TSM shows the
worst O(n2) time when all points are located along one
ray direction from the light source and they are almost
transparent. In mixed rendering the TSM shows its
best time or near O(n) performance, when opaque
elements are located in the front layers to the light
source. As shown in Table 1, the TSM time
(0.0853/437645) of the opaque dragon model is 1.75
times faster than the TSM time (0.2088/624614) of the
translucent cloud model.

芸術科学会論文誌 Vol.6 No.1 pp.21-36

32

Table 1. Performance of advanced point splatting
Model Dragon

(opaque)

Cloud
(translucent)

Outdoor
scene with
fountain

Number of points 437645 624614 1841320
Translucent Shadow
Mapping (sec)

0.0853 0.2088 0.3865

Sorting (sec) 0.0522 0.0785 0.1902
Shading (sec) 0.0243 0.0352 0.0876
Rendering 5.2 fps 2.7 fps 1.5 fps

6. Conclusion and future work

The challenge of realistic interactive visualization of
complex physical models opens up many new research
directions in rendering, classification, and interpolation
of the physical properties of points, for adaptive
transparency control and for fully photorealistic
depictions.
Point rendering has been shown to be an effective

method for the display of mixed 3D data. We believe
that our work will contribute to future research in the
field of computer graphics for several reasons. First, it
is the first attempt to build a universal rendering
engine to render mixed data sets, volume and
polygonal primitives. Second, translucent mapping and
bucket sorting can be used with any other rendering
type as a high-speed method for accurate mapping of
shadows, light, and collision detection. Third, all the
methods used in our paper can be utilized by GPU-
based algorithms.
In spite of its advantages, point splatting suffers

several drawbacks.
(1) The chief problem is associated with the memory

requirements of point-type 3D data. To
demonstrate the ability of our rendering system we
use the thousands of points for each 3D model.
The large amount of point data affect to the
rendering speed. Also the numerous rendering-
oriented attributes absorb a large amount of
memory.

(2) The next set of problems is related to image
quality. The image quality of point rendering is
mostly depends from quality of models. In our
demonstration, we mixed the high quality models
(dragon, bunny, cloud, buildings) and the simple
models (grass, tree, basin). Those results show us
that we need to do more research on the image
space EWA filtering and Phong splatting [3] for
point geometry with modifications suitable for a
transparent object. We will also need to use

advanced lighting technologies, such as radiosity
for global illumination, without losing the
advantages of point rendering.

(3) Other issues are related to the optimization of the
preprocessing steps. In general, all preprocessing
algorithms are implemented on the CPU by many
researchers, but most of them are not optimized
for the GPU implementation.

For the future improvement, we are working on the
following research areas.

 Research on effective point conversation
techniques for polygon and unstructured grid data.

 Improvement of quality and performance of TSM
 More research on additional rendering-oriented

attributes for realistic point visualization and the
compression methods of attributes. We also should
investigate the question of what additional
information we have to store with each point to
accelerate spatial search.

 GPU implementation of visibility sorting and TSM
 Implementation of advanced illumination

techniques within TSM

Acknowledgement

This work was partially supported by the Ministry of
Education, Science, Sports and Culture, Grant-in-Aid
for Scientific Research (B) 16300021.

References

[1] M. Levoy: “Display of Surfaces from Volume Data,”
IEEE Computer Graphics and Applications, Vol. 8, No. 3,
May, 1988.
[2] M. Botsch, A. Hornung, M. Zwicker, L. Kobbelt: “High-
Quality Surface Splatting on Today's GPUs,” Eurographics
Symposium on Point-Based Graphics 2005.
[3] M. Botsch, M. Spernat, L. Kobbelt: “Phong Splatting,”
Symposium on Point-Based Graphics 2004, pp. 25-32, 2004.
[4] M. Zwicker, H. Pfister, J. van Baar, M. Gross: “Surface
Splatting,” SIGGRAPH 2001.
[5] L. Westover: “Interactive Volume Rendering,”
Proceedings Volume Visualization, pp. 9-16. May 1989.
[6] M. Zwicker, H. Pfister, J. van Baar, M. Gross: “EWA
Volume Splatting,” In IEEE Visualization (VIS), pp. 29-36,
October, 2001.
[7] W. Chen, L. Ren, M. Zwicker, and H. Pfister: "Hardware-
Accelerated Adaptive EWA Volume Splatting," in
Proceedings of IEEE Visualization 2004, pp. 67-74, 2004.
[8] L. Williams: “Casting Curved Shadows on Curved
Surface,” Proceedings of the 5th Annual Conference on
Computer Graphics and Interactive Techniques, pp. 270-274,
August 23-25, 1978.
[9] F. Crow: “Shadow Algorithms for Computer Graphics,”
Computer Graphics, 11(2), pp. 442-448, Summer 1977.

芸術科学会論文誌 Vol.6 No.1 pp.21-36

33

[10] M. Hasenfratz, M. Lapierre, N. Holzschuch. and F.
Sillion: “A Survey of Real-Time Soft Shadows Algorithms,”
Eurographics 2003.
[11] C. Dachsbacher, M. Stamminger: “Translucent Shadow
Maps,” Eurographics Symposium on Rendering 2003.
[12] C. Everett: “Order-independent Transparency,”
NVIDIA, 2001.
[13] T. Locovic, E. Veach: “Deep Shadow Maps,”
Proceedings of ACM SIGGRAPH 2000.
[14] N. Govindaraju, M. Hensen, M. Lin, and D. Manocha:
“Interactive Visibility Ordering and Transparency
Computations among Geometric Primitives in Complex
Environments,” Symposium on Interactive 3D Graphics,
2005.
[15] S. P. Callahan, M. Ikits, J. Luiz Dihl Comba, C. T.
Silva: “Hardware-Assisted Visibility Sorting for
Unstructured Volume Rendering,” IEEE Trans. Vis. Comput.
Graph. 11(3): pp. 285-295 (2005).
[16] P. Kipfer and R. Westermann: “Improved {GPU}
Sorting,” GPUGems 2, Chapter 46, 2005, Addison-Wesley,
pp 733-746.
[17] P. Kipfer, M. Segal, R. Westermann: “UberFlow: A
GPU-Based Particle Engine,” Graphics Hardware 2004.
[18] R. Yagel, D. Reed, A. Law, P.-W. Shih, and N. Shareef:
“Hardware Assisted Volume Rendering of Unstructured
Grids by Incremental Slicing,” Proc. 1996 Volume
Visualization Symp., pp. 55-62, Oct. 1996.
[19]. C. Prashant, J. Meyer: “Incremental Slicing Revisited:
“Accelerated Volume Rendering of Unstructured Meshes,”
Proceedings of IASTED Visualization, Imaging, and Image
Processing 2002, Ma'laga, Spain, Sept. 9-12, 2002.
[20] P. Bunyk, A. Kaufman, and C. Silva, "Simple, fast, and
robust ray casting of irregular grids," in Proceedings of the
Dagstuhl'97 - Scientific Visualization Conference, pp. 30--36,
1997.
[21] M. P. Garrity, ``Raytracing Irregular Volume Data'',
Computer Graphics, 24: pp. 35-40, 1990.
[22] M. Weiler, M. Kraus, M. Merz, T. Ertl, “Hardware-
Based Ray Casting for Tetrahedral Meshes.”, pp. 333-340
IEEE Visualization 2003
[23] D. King, C. Wittenbrink, H. Wolters, “An Architecture
for Interactive Tetrahedral Volume Rendering”, pp. 101-110,
International Workshop on Volume Graphics 2001.
[24] M. Kraus, W. Qiao, D. S. Ebert. “Projecting Tetrahedra
without Rendering Artifacts.” in Proceedings IEEE
Visualization 2004, pp. 27-34, 2004
[25] P. Shirley and A. Tuchman. ”A polygonal
approximation to direct scalar volume rendering.” in 1990
Workshop on Volume Visualization, pp 63--70, San Diego,
CA, December 1990
[26]. J. Comba, J. Klosowski, N. Max, J. Mitchell, C. Silva,
and P Williams. “Fast polyhedral cell sorting for interactive
rendering of unstructured grids.” Computer Graphics Forum,
Vol 18, No 3, pp 369--376, September 1999.
[27]. R. Cook, N. Max, C. Silva, and P. Williams. “Image-
Space Visibility Ordering for Cell Projection Volume
Rendering of Unstructured Data.” IEEE Transactions on
Visualization and Computer Graphics, Vol .10, No. 4, 2004

[28] M. Levoy: “A Hybrid Ray Tracer for Rendering
Polygon and Volume Data,” IEEE Computer Graphics and
Applications, vol. 10, no. 2, pp. 33-40, 1990.
[29] K. Kreeger and A. Kaufman: “Mixing Translucent
Polygons with Volumes,” IEEE Visualization 1999.
[30] S. Roettger, M. Kraus, and T. Ertl: “Hardware-
Accelerated Volume and Isosurface Rendering Based on
Cell-Projection,” In Proc. Visualization '00, pp. 109-116.
IEEE, 2000.
[31]. M. Ferre, A. Puig, D. Tost: “Using a Classification Tree
to Speed up Rendering of Hybrid Surface and Volumes
Models,” WSCG 2004: pp. 105-112.
 [32] D. Takeshita, T. Fujimoto and N. Chiba; “Recursive
Particle Generator for Animating Plume Fluid,” Proceeding
of IWAIT, 2005.

芸術科学会論文誌 Vol.6 No.1 pp.21-36

34

Figure 12. Visualization of mixed volume, point and
polygon data. (a) mixed rendering (b) mixed object
with different level of translucency (c) shading with

different material values

(a)

(b)

(c)

Figure 13. Rendering of simple artificial eye.
(a) surface rendering (b) mixed rendering

(a) (b)

Figure 14.Comparison of volume and surface
rendering of medical data (a) volume rendering, (b)
translucent volume rendering (c) surface extraction

(d) mixed rendering

(a) (b)

(c) (d)

Figure 15. Sample usage of the translucent shadow
mapping table (a) translucent shadow mapping for
surface extraction (b) translucent shadow mapping

for generating self shadow

(a) (b)

芸術科学会論文誌 Vol.6 No.1 pp.21-36

35

(a) (b) (c) (d)

(e) (g) (f) (h)

(i)
Figure 16. Mixed rendering of artificial outdoor scene. (a) polygon model of dragon (b) 3D point cloud taken by
range scanner (c) particle model of cloud (d) point based surface model generated by algebraic equation (e-h)
simple volume models generated by implicit functions – fountain, grass, tree and road (h) mixed rendering of
point, polygon and volume data.

芸術科学会論文誌 Vol.6 No.1 pp.21-36

36

(a) (b)

(c) (d)
Figure 17. Different situations were translucent and opaque objects located in different order from the light source. (a) shadow of
opaque objects, (b) the translucent object is located between the light and opaque object (c) the opaque object is located between the
light and translucent objects (d) the light is located inside the translucent object. The location of the light source is marked by red spot.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

