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1 Introduction

Motion capture data are being used to address an
increasingly broadening repertoire of animation re-
lated tasks, ranging from film production and game
products to research on realistic human motion and
even medical applications. Because of their vast
utility, many technologies have been developed to
acquire such data but magnetic trackers remain the
dominant motion capturing solution for computer
graphics applications. But even though magnetic
trackers have many advantages versus their me-
chanical, optical and sonic counterparts, they are
amenable to electromagnetic interference. Conven-
tional calibration procedures are tedious and very
time consuming, since they require the manual col-
lection of measurements on a relatively dense three
dimensional grid inside the tracking area. Despite
this labor-intensive procedure, this type of calibra-
tion cannot compensate for every type of distor-
tion resulting in limited accuracy and even motion
discontinuities in noise contaminated environments.
We propose a Bayesian-neural approach that allows
the automatic calibration of magnetic motion cap-
turing systems, using motion tracking data from a
short, free-form tracking of a calibration pole.

1.1 Background

Motion capture data are continuously gaining pop-
ularity among researchers and animation industry
professionals, as the recorded motion sequences in-
herently capture the subtleties of human bodily ex-
pressions without the need for tedious keyframing
by expert animators or extensive rule based edit-
ing. By carefully piecing together appropriate mo-
tion clips it is thus possible to create custom length
animations with a very high degree of realism, in a
fraction of the time and effort needed by keyframe
or dynamics based methods.

In the last 20 years, magnetic tracking has
emerged as the preferred way of measuring motions
in computer graphics applications, because it offers
a simple, elegant way of measuring position and ori-
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entation of heads, hands, the entire body and other
objects in free space. Other tracking technologies
may offer faster performance for a single sensor but
the update rate and accordingly the dynamic per-
formance, degrades inverse proportionally each time
another sensor is tracked.

The main problem associated with magnetic mo-
tion capture systems is their sensitivity to electro-
magnetic interference and the presence of metal ob-
jects in the vicinity of the motion tracking area.
Even though pulsed DC systems have been devel-
oped to limit the sensitivity of the conventional AC
trackers to nearby conductive metals, this technol-
ogy is unable to compensate for the distortion ef-
fects of ferrous metals and external electromagnetic
interference (EMI).

In real-world settings it is often the case that the
floors and ceilings of the motion capture studios
contain steel bar reinforcement, which inevitably in-
terferes with the motion capturing process, induc-
ing measurement errors. Another source of inter-
ference comes from the magnetic signatures of elec-
tric and electronic devices. In most cases even if
precautions are taken to remove large metallic ob-
jects away from the immediate tracking area, the
interference coming from the studio’s construction
materials and its power lines, cannot be so easily
counteracted.

Another problem when working with magnetic
motion capturing systems is that of the field cover-
age region. In order for the sensors to be able to de-
tect reliably their position and orientation, the field
in the vicinity of the sensor must be stronger than
a certain threshold. This follows from the nature
of the motion tracker systems and is the parameter
which in effect limits the motion capture range. The
closer the field strength is to the threshold value at a
given point, the less accurate and more susceptible
to EMI are the sensor readings. Depending on the
specific implementation of the capturing system, if
during a motion capturing session the sensor ex-
its the region where the field is strong enough for
reliable motion tracking, then the sensor measure-
ment will likely become stuck to the last reliable
measurement; that of the exit point from the oper-
ational tracking region. Upon re-entry of the sen-
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sors in the operational tracking region, the sensors
will regain the ability to detect their coordinates
and consequently the sensor reading will jump from
the previously stuck position to the new point of re-
entry. The intermediate 'stuck’ sensor positions will
be dubbed outliers.

This effect could also be regarded as a type of
distortion; one for which we would require a cor-
rection procedure or at the very least a detection
algorithm but for which existing calibration proce-
dures are unable to address.

2 Related Work

To control the metallic or electric distortion prob-
lem, especially for the AC tracking technologies that
are more susceptible to it, special calibration tech-
niques have been developed. The most frequently
applied is called “mapping and compensation” and
includes the manual collection of hundreds of data
points (mapping) to determine the amount of dis-
tortion in the operational area. This collection of
points is usually performed with the help of a verti-
cal pole with the sensors placed on it at fixed inter-
vals and orientation. This calibration pole is then
consecutively positioned on each point of a dense
rectangular grid drawn on the tracking area’s floor.
The data points collected in this manner, span a
three dimensional, regular rectangular grid. These
data points are then used to form a correction (com-
pensation) map that is applied to the sensed signals.

While this procedure is relatively effective, it is
time consuming and costly. Further it assumes that
the field transmitter remains stationary and that
no metallic objects move or are introduced into the
area at any time after the mapping. Also, changes
in the power distribution or changes in the opera-
tion of electric devices cannot be taken into account.
In this sense, the corrections achieved with this type
of calibration are ineffectual, for instance, if there
is a need to periodically relocate the field transmit-
ter, if a metal object is introduced into the motion-
capture area or even if a monitor in the vicinity of
the tracking area is turned on.

Approaches towards a more efficient or auto-
mated calibration have also been developed for clin-
ical and medical applications, to accommodate the
mapping or tracking body parts or organs using
magnetic tracking technologies [2] [3] [5] However,
all the current approaches currently involve the use
of hybrid technologies. In other words, the only way
to circumvent the majority of the motion tracking
deficiencies of electromagnetic technologies is by at-
tempting to combine optical, mechanical (inertial),
sonic and magnetic motion tracking systems into a
single framework [1] [11] [8] [9].

While this remains a valid solution to a lot of
problems, it does so at the expense of the added
cost and complexity of attaining, setting up and
managing the hybrid systems. It also fails to pro-
vide a universal solution to one of the most impor-
tant motion tracking technologies used in computer
graphics today. In that sense, an approach aimed
specifically to the magnetic motion capturing prob-
lems is necessary.

3 Bayesian Framework

If we are to get the most out of a calibration proce-
dure, then it follows that we must take into account
all the available domain knowledge we have about
motion capturing. This fact is a fundamental axiom
of plausible reasoning and is inherently contained in
the Bayesian approach to probability theory. In the
case of motion capturing of a human actor, this do-
main knowledge concerns the physical properties of
motion itself, the specifications and nature of the
motion tracking system, as well at the inherent at-
tributes of the actor’s kinematics. Ideally we would
like to incorporate

e Motion continuity. Consecutively detected co-
ordinates have a larger probability of being
closer to each other than further.

e Distortion continuity. The electromagnetic
field can be taken to be continuous if there are
no metal surfaces of appropriate dimensions.

e Tracker specifications. The initial conditions
of the calibration can be taken from the ideal
performance of the magnetic tracker in the ab-
sence of noise, thereby optimizing the parame-
ter search.

e Skeleton constraints. The fixed structure of the
human body constraints the possible coordi-
nates that the sensor position can be at any
given time.

e Human body kinematic freedom constraints.
The human body’s joints have limitations as to
the range of rotations they can perform as well
as the acceleration of individual limbs. This
further constraints the parameter space and
can be used to detect and correct calibration
inconsistencies.

e Human initial posture. The initial posture of
the motion capturing process could provide an
approximate starting point for the parameter
estimation.

Using as much of this prior knowledge as possi-
ble, we could view the problem of calibration as the
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parameter estimation of a mapping from sensor val-
ues to body coordinates. This parameter estimation
should by no means be static. Since we don’t know
how the field will change due to unpredictable inter-
ference or how the sensors will move relative to the
actor’s joints, we cannot solve the problem of cali-
bration before analyzing the motion tracking data
itself.

This leads us to consider a different paradigm
to the calibration problem. If we base our cali-
bration procedure on the entire range of possible
motion capture sessions, all the possible combina-
tions of field distortions and different actor bod-
ies, we are loosing focus of the problem at hand,
which is to acquire the best possible quality of mo-
tion capture data given the already acquired mocap
session’s measurements. The calibration mapping
should thus be defined as a property of an individ-
ual session rather than a preprocessing step to the
general problem of motion tracking.

As a result this approach aims to use the prior,
domain knowledge in conjunction with the specific
motion tracked data to produce a clean motion and
at the same time detect the average distortion field
for the duration of that particular capturing session.
Furthermore, such a calibration procedure could be
completely automated, boosting efficiency and fil-
tering out inconsistencies in a single framework.

3.1 Neural Network Distortion Rep-
resentation

A key component of any calibration system that
attempts to compensate for distortions in the elec-
tromagnetic field, is the way it will map the noise
contaminated sensor measurements to correct or
consistent motion tracked coordinates. This map-
ping could be represented as a vector field which
given sensor reading would yield its calibrated co-
ordinates. To represent this vector field we can
use a generalization of the 3D object representa-
tion approach of [10] with three outputs, one for
each distortion coordinate. The new neural net-
work architecture can be seen in figure 1, where the
size of every layer is shown and again the R inputs
can be feature functions of the input space. These
feature functions can be chosen according to the
shape characteristics of the field we wish to repre-
sent. This choice could thus include some of our
prior knowledge about the form of the magnetic
field and the distortion we expect given the system’s
configuration, inside the motion tracking studio.
The advantages of using a neural network repre-
sentation for the distortion field are numerous. For
one, we make a tremendous economy in the size of
the representation. Instead of storing hundreds of
sampled points and interpolating for other points

Input Hidden Layer
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|

Figure 1: A three layer neural network with R in-
puts, N hidden nodes and 3 outputs. This type of
architecture can represent any continuous, analytic
vector field.

Output Layer

based on the local neighborhood of samples, we
have a compact analytic representation, which can
be evaluated directly, for any point in the tracking
region. This also reveals the computational advan-
tages of such an approach. Instead of having to find
the nearest sampled points to each sensor position
in order to interpolate for each sensor measurement,
the distortion can be found with an evaluation of
the neural network directly for that point.

Another point where the neural network repre-
sentation yields superior results is the expressive
power. By using custom feature functions as inputs
to the network we can generalize to a better ap-
proximation of the distortion field, given the same
sampled points. To see how that is possible it is
enough to point out that the generalization will be
a non-linear interpolation of the sampled points.
The exact function used for the interpolation will
be specified by the combination of the feature func-
tions and the sigmoid activation functions of the
hidden layer. That combination will in turn be the
result of the training procedure and thus will have
emerged as the locally optimum way of interpolat-
ing through the given sampled points.

4 Pole Calibration Algorithm

Turning our attention to the problem of calibration,
in the scope of this paper and given the vast ex-
tend of this topic and the need for concrete results
to verify the correctness of our proposed approach,
the problem of human motion calibration had to be
simplified. The developed algorithm, consequently,
attempts to address the problem of automatic cal-
ibration using, not the motion tracking data of a
human actor, but a free hand movement of a cali-
bration pole. The concepts and problem formula-
tion for that simplified problem will then be used
to identify ways of addressing the general problem.

The procedure for obtaining the data to be used
for calibration, uses a pole mounted with sensors in
fixed length intervals. The calibration pole is then
placed in a fixed position inside the motion tracking
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Figure 2: The calibration procedure starts with the
user picking up the calibration pole and moving it
around the motion tracking region. As is apparent
from the sequence, the trajectory of the pole is free
although the speed should be kept relatively slow
to minimize interpolation errors.

area and the motion tracking is initiated. The user
picks up the calibration pole and moves it around
the motion tracking region freely, as shown in figure
2. After most parts of the region have been swept
by the calibration pole, a procedure which should
not take more than a minute, the motion tracking
is stopped. The data collected are then analyzed
to determine the distortion field and the calibrated
motion capture of the pole at the same time.

The aim of this section is to find a way of com-
bining domain knowledge about the structure and
the motion of the calibration pole together with
the known distortion and noise characteristics, in
order to learn a mapping from the measured coor-
dinates to the calibrated ones. This task requires
that we redefine our goal. Since we are primarily
interested in motion capturing human animation,
it is apparent that the coordinate frame of the cali-
brated coordinates need not be the same as that of
the absolute measurement frame. Instead any or-
thogonal transform that consequently preserves the
angles between vectors would be irrelevant to the
successful utilization of the calibrated data.

Formally stated, if we signify the sensor coordi-
nates and measurements as x and z = f(z) respec-
tively, a sufficient condition for the calibration to
be successful in a region R is for the function f to
be invertible in R. By reading the sensor values
210 = f(x1k), 228 = f(x2k), o 2Zngk = [(@nk)
for kK = 1..m consecutive frames we acquire m sets
of n sensor values. If we proceed to filter these
data, taking into account the collinearity and spac-
ing constraints imposed by the structure of the cal-
ibration pole, together with the prior knowledge we
have about the motion continuity and velocity con-
straints, we can get m sets of the best possible es-
timates of those sensor coordinates which we will
symbolize with :)A'JL]C, :22’]6, fin,k'

If we were interested for the best estimates of the

motion of the calibration pole, this is perhaps where
we would terminate this algorithm. However, since
we want to use the pole data to get the best esti-
mate of the correct sensor coordinates of a human
motion capture session, we need to combine these
mappings to a unified representation of the distor-
tion field. The major reason for doing so is that
the Bayesian filtering does not take into account
the spatial characteristics of the distortion and thus
might map two approximately equal measurements
to different estimates of the sensor coordinate, de-
pending on their respective trajectory history. In
order to approximate the inverse of the distortion
f71(2), the mapping must be one to one. This is
precisely where the neural network representation
comes into play.

If we train the neural network to represent a
function ¢(z) from the measurements z to our es-
timate of the actual sensor coordinates, using the
correspondence of z;, to &;, we can effectively
cross-validate or integrate all the similar measure-
ments into a single mapping function. This map-
ping, by the very definition of the training method,
has the property of a minimized mean square er-
ror over the entire sampled region. In other words,
the neural networks serves here to combine all the
measurement-estimate pairs in order to yield a con-
sistent, one to one mapping of the sensor measure-
ments to the calibrated coordinates.

Another point worth noting is that since the neu-
ral network function ¢(z) approximates the cross-
validation of the filtered sensor’s coordinate esti-
mates Z, it effectively implies that ¢(z) is trained
to be a linear space and that we can furthermore
write:

|71 — @2| = |¢(21) — B(22)] (1)
for any x1, zo and their corresponding measure-
ments z1, z2. Without loss of generality we can
set ¢(0) = 0 and use the fact that from equation 1
we get |z| = |4(z)] to readily prove that the angle
between any two vectors is preserved. Since ¢(z)
is trained to minimize the error between |z — x|
and |¢(z1) — ¢(2z2)] it is apparent that the resulting
function will try to preserve the angles between vec-
tors and thus is a valid candidate for a calibration

mapping.

4.1 Tracking Range

During the motion tracking of the calibration pole,
as the pole gets moved around the tracking area, the
sensors sample a certain volume of the capturing re-
gion. Since the bounds of the tracking region are
not visible to the user or performing actor, there is
a relatively high chance of passing them during all
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Figure 3: The effect of a calibration pole trajec-
tory across the outlier boundary. The sensor actual
position is denoted by a blue square, the actual tra-
jectory by a dashed red line, the sensor detected
position by a red square and the detected trajec-
tory by a blue dashed line. Notice the jump from
the point of exit to the point of re-entry, denoted
by a blue arrow.
;»'7 -'- N v

Figure 4: A zoomed portion of the convex hull of
the sensor measurements. Points as blue crosses are
the filtered estimates of the sensor coordinates that
reside within that convex hull and points as green
stars are the ones lying outside (outliers)

but the most static motion capture sessions. The
points residing outside the tracking region V; but
inside the sampled volume V; will yield outliers as
discussed in previous paragraphs. The points sam-
pled there will consequently report the last point on
the boundary of Vs and V; where the sensor exited
V;. This phenomenon is graphically shown in fig-
ure 3, where the red dashed line denotes the actual
sensor trajectory, the blue points correspond to the
placement of the sensor on the calibration pole, the
red points signify the reported coordinates from the
sensors in the absence of any other type of interfer-
ence, and the red arrows give the difference between
the sampled points and the reported points or else
the distortion of the field in the sampled points.
That figure also explains the jump effect from the

points of exit from the tracking region, to the points
of re-entry. In the figure this instantaneous jump ef-
fect is shown as a blue arrow and clearly shows the
type of inconsistencies and discontinuities that the
outlier effect imposes. Figure 4 shows the actual
filtered data that reside within the initial measure-
ment’s convex hull with blue color and the ones that
reside outside (outliers) with green.

There is a number of problems associated with
the inclusion of the outlier points in a neural net-
work training procedure for the distortion field.
These are associated with the fact that the train-
ing set will contain multiple conflicting associations
between points in the outlying area Vi — V; and
the various points of exit from V;, as well as the
discontinuities from the later to the points of re-
entry into the V;. The result of these bad examples
are a compromised training procedure and a bad
generalization at least in the vicinity of the outlier
boundary with the V;. Therefore it is instrumental
for the efficiency and performance of the algorithm
to discard these points prior to the training process.
In a later paragraph we will discuss how that can
be achieved.

4.2 Bayesian Filtering

Before it is possible to discard the outlying sensor
measurements or train the neural network repre-
sentation with the distortion field, we need to de-
cide on an appropriate filtering architecture. The
approach taken must explicitly take into account
the already identified prior knowledge, the simpli-
fied structure of the calibration pole and the en-
tire sequence of the motion tracking data, to find
what is the most probable estimate of the sensor’s
position at each frame. The obvious choice here is
Kalman filtering since it enables us to propagate our
state of knowledge (probability distribution) about
the sensor’s correspondence to real points, through-
out the motion tracking sequence while at the same
time specify the restrictions imposed by the sensor
setup. In other words given our initial uncertainty,
the uncertainty of the starting position and the er-
rors associated with the process and the subsequent
measurements, find the most probable trajectory of
the sensor’s coordinates through the motion track-
ing area.

Unfortunately, this problem can quickly become
untractable for nonlinear dynamic processes and re-
strictions, since even if we begin with a conjugate
probability distribution function for the initial and
process parameters, the distribution will soon cease
to be conjugate. This in turn means that we will
no more have a simple closed form for the probabil-
ity distributions and the complexity of propagating
that distribution forward in time will soon become
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overwhelming.

Since the calibration pole is translated and ro-
tated within the bounds of the tracking area, the
most appropriate system model should accommo-
date this type of motion. However, rotation in Eu-
clidean space is not a linear transform and thus the
dynamics of our system model are forced to be non-
linear as well. A simple linearization of the dy-
namics and measurement equation about the state
estimate at each pose, is not sufficient to yield cor-
rect results due to the strong non-linearity of rota-
tional transforms. Instead a numeric Gauss-Newton
method was employed, that linearizes the dynamics
and measurement equation iteratively about con-
secutive state estimates, until the state update con-
verges.

In this approach the system model was taken to
consist of the position of the sensor on one end of the
calibration pole, its rotational transform in quater-
nion form, the linear velocity and the rotational ve-
locity in each axis. Given the initial orientation of
the calibration pole axis ey which is readily found
by the first principal component of the sensor mea-
surements at the first frame, we can project all the
measurements on that direction, sort the order of
the sensors in case they have not been placed con-
tiguously, and use the following system model equa-
tions:

tpr1 =tp + 7V
qr+1 = Qtranqk
Vi+1 = Vi

WEg+1 = Wk

where ti, qr, vi and wj are the translation,
quaternion rotation, linear velocity and angular ve-
locity respectively and Qiren, © and Q are the
quaternion extrapolation matrix and the angular
velocity in quaternion and matrix format respec-
tively. The later are analytically given by:

Q|7 2 QT
Qtran = cos(H 2” )+ W‘”M' 2|| )
Q= (O>wa:; Wy, wZ)T
0 W Wy Wz
= Wy 0 —w, wy
Q B wy Wy 0 —Wg
Wz 7wy Wy 0

The interested reader is referred to [6] for details on
the linearization of the above equations.

Using the fact that the distance between the sen-
sors is constant and that all the sensors reside on
the axis of the calibration pole, we can write the
following measurement update equations:

(6)

where ¢ = 1..n is the sensor index, k is the frame
index and d is the distance between two consecu-
tive sensors. The later can be either given by the
calibration pole configuration or approximated by
the average distance of consecutive sensor measure-
ments projected on the eq direction.

If the process noise and the measurement noise
are taken to be gaussian and white, a reasonable ap-
proximation in most engineering applications, then
the equations for the Kalman filter are given in [7]
[4].

z; , =t + idqreoqs,

4.3 Cascade Training & Outliers

If we apply the Kalman filter described above to the
collected motion captured data, we acquire the cal-
ibrated sensor coordinates of those measurements.
This association of points can be used to train the
neural network distortion field discussed previously
to give a representation of the calibration errors.
Having defined the way the distortion errors are
derived, we can now reconsider the problem of dis-
carding the outlying points in order to arrive to a
more robust training procedure.

Since it is clear that the volume spanned by the
sensor measurements is always a sampling of V4,
where the field is stronger than the detection thresh-
old value, these sensor measurements, in a sense,
define the bounding volume of V; [ V.

One easy way to discard ”stuck” points would
therefore be to find the sensor measurements that
reside closest to the surface of the minimum sized
polyhedron that includes all the sensor measure-
ments. These measurements would at least include
all the points on the boundary surface between Vj
and V;. Thus to remove the outliers it would suffice
to discard the surface points from the training pro-
cedure. After discarding these outlying points, the
training procedure can continue without the prob-
lems already mentioned.

To increase performance, in practice, the convex
hull of the sensor measurements was used instead
of the exact bounding polyhedron. This enabled a
much faster implementation of the test conditions
at the expense of some minor inaccuracies that it
is believed that the neural network can generalize
over.

It is possible to refine the calibration process if
we simulate the neural network distortion field with
the sensor measurements and refilter the resulting
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Figure 5: The mean convergence graph of the iter-
ated Kalman filter. Iterations correspond to the ap-
plication of the Gauss-Newton method around the
current state estimate.

calibrated coordinates with a much smaller process
and measurement error. In practice the errors of
the iterated Kalman filtering can be taken from the
mean square error of the neural network training
session. If there are no outliers in the motion track-
ing data then this process will quickly converge,
while if there are unremoved outliers the filtering
error will reach and fluctuate around a minimum.

5 Experimental Results

The algorithm described was tested with the use
of a “motion star” magnetic pulse motion tracking
system by Ascension. One out of the two avail-
able field generators was utilized for training, while
the other, unconnected field generator was used to
provide additional distortion. Furthermore, the ac-
tive field generator was placed at floor level to pro-
vide enough vertical space in order to test for outly-
ing sensor measurements. The calibration pole was
mounted with six sensors at constant fixed intervals
of approximately 30 cm and placed in front of the
active field generator.

Three different motion tracking sessions were
taken, where three different users picked up the cal-
ibration pole and moved it around the room trying
to sweep as much volume as possible. The duration
of these sessions was approximately one minute and
the motion capturing system had a sampling rate of
30 frames per second. Thus the datasets collected
contained ten to twenty thousand points with six
sensor readings for each frame.

The data were then preprocessed to convert from
inches to meters and filtered using the iterated ex-
tended Kalman filter (IEKF) described in previous

.........

Figure 6: The distortion field learned by the neural
network. The distortion grows with the radius from
the field generator, as expected.

sections. Measurements were taken to find an up-
per bound for the linear and angular velocity of the
pole, as well as the average error from the field dis-
tortion and they were used to define the initial sys-
tem and measurement error covariance matrices for
the operation of the filter. Figure 5 shows the aver-
age convergence of the IEKF for a typical calibra-
tion trial.

In practice, to enhance training robustness and
efficiency, we can generate a 3D grid inside the con-
vex hull of the sensor measurements and use the
IEKF filtered data to interpolate calibrated values
for those points. We then can use the grid based
dataset itself for training the neural network. The
interpolation which can be linear or of higher or-
der will serve to remove redundant points from very
densely sampled regions of space therefore speeding
up training and at the same time even out minor
filtered inconsistencies. While the latter could be
handled by the neural network itself, interpolation
has the advantage that it only has to be performed
once before the training occurs.

The neural network employed had six inputs
with z, y, 2, 22, y> and 22 feature functions
and five nodes in the hidden layer. Also the
Levenberg Marquardt (LM) training algorithm
was used that typically converged in no more than
ten epochs, to an average mean square error in the
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Figure 7: The trajectory of the original sensor coor-
dinates of the calibration pole, the Kalman filtered
estimates of those coordinates and the calibrated
sensor coordinates using the trained neural network.

order of 1072 meters. Each epoch consisting of ap-
proximately 60 thousand points, took 15 to 20 sec-
onds on an Athlon 1Ghz PC.

The data was checked for outliers by discard-
ing all the filtered points residing outside the sen-
sor measurement’s convex-hull, and the remaining
points were used to train the neural network distor-
tion field. The resulting distortion field, is shown in
figure 6 while figure 7 displays the sensor measure-
ments, Kalman filtered estimates and neural net-
work simulated coordinates in pairs for evaluation
purposes.

5.1 Evaluation

From these two figures we can clearly see that the
distortion is very small close to the field generator
and increases almost proportionally with the dis-
tance from it. This is indeed the form of the distor-
tion that is expected and documented for most mag-
netic motion capture systems with a single field gen-
erator. As another criterion of evaluating the cor-
rectness of our proposed method it must be noted
that the resulting simulated sensor measurements
have an average mean square error of about lmm
compared to the filtered estimates which are by def-
inition constrained to the geometrical properties of
the calibration pole.

In the above experiments there was no exces-
sive distortion or interference factors present, which
leads to the question of the algorithm’s applicability
under more severe conditions. To address this ques-
tion it has to be noted that an implicit assumption
of any static calibration algorithm is that there is a
constant one to one mapping between the measure-
ments and the actual values and that the sample
density is adequate to approximate the distortion
function within reasonable accuracy inside our re-
gion of interest. Should these conditions hold an
appropriate neural network will be able to repre-
sent that distortion function.

However, in real world situations there is always
an amount of interference and metal objects in-
side the active tracking area could introduce regions
of irreversible distortion. Furthermore, the sensor
readings are also dependant on the way they are
processed by the device driver in order to yield po-
sition and orientation measurements. This process-
ing differentiates the current approach from self cal-
ibration methods appropriate to field measurement
science, since it introduces further field independent
non-linearities, especially near the active tracking
range boundaries. Consequently the applicability
of the algorithm must be evaluated by considering
practical scenarios but with realistic expectations
for this class of problem
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6 Conclusions & Future Work

With the current implementation of the algorithm,
it is clear that it deals with off-line motion cap-
turing. The motion data have to be first collected
before they can be used. Nevertheless, if the algo-
rithm is used just to provide the distortion field cali-
bration, then subsequent measurements can be cor-
rected with respect to static interference factors on-
line. In this scenario, the new points collected will
have to be simulated (forward pass) from the neu-
ral network distortion field in order to provide the
calibrated points. The only error that might result
from this type of calibration procedure is a small
global translation or rotation error, which is irrele-
vant to the application of human character motion
tracking since the angles between body segments
are preserved. This form of calibration however,
is not customized to each specific motion tracking
session any more, nor can it correct for detected
outlying data and transient interference. Therefore
it sacrifices some of the merits of the described ap-
proach and retains only the automatic and more
accurate distortion field representation.

The probabilistic approach to calibration for indi-
vidual motion captured datasets has been presented
as a generalized framework, only a subset of which
has been currently implemented. As such, there is
a lot of extensions and enhancements that could be
included in this section.

The main motivation behind the initial calibra-
tion framework approach was to automate the ac-
quisition of clean, consistent, human animation
data from magnetic motion tracking systems. As
a first step, the calibration process was greatly sim-
plified and automated by the use of a calibration
pole. Nevertheless, the final target of the devel-
oped framework is the human body structure and
not a calibration pole. The later was used to dis-
play the merits of the approach to a simple use case
and to provide evidence for the accuracy and ease of
the method. Consequently, a natural way forward
is to extend the approach to more than one rigid
segment, in order to represent the human skeleton
articulation structure. While doing so does not im-
pose any theoretical difficulties, it would be prefer-
able to research ways of dealing with the limita-
tions of the proposed method in the simple case of
a calibration pole before generalizing to the more
complex articulated case.
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