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Abstract

Reassembling fragmented stone tools from the Paleolithic era remains a significant archaeological challenge.

Our study addresses this challenge by introducing a matching algorithm with a primary emphasis on enhancing

computational efficiency and refining the flake surface matching process. Our method builds upon previous

study, specifically targeting reductions in the computation time. The algorithm was tested on a dataset com-

prising 43 stone models. A critical aspect of this study is flake surface matching which is a fundamental aspect

of stone tool reassembly. By optimizing the computational cost, we aim to provide archaeologists with a more

efficient and accurate tool for reconstructing archaeological artifacts.
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1 Introduction

The Paleolithic era witnessed the production of a
wide range of stone tools, including cutting im-
plements and weapons. Several archaeological
sites have been excavated and analyzed. These
sites often contain remnants of debris generated
during the production and utilization of stone
tools. Considering their durability compared to
organic materials, such as bones, antlers, and
wood, stone artifacts provide significant evidence
of the locations and periods of early human ac-
tivities because of their geographical distribution,
and adaptive capacities in various environments
[1].

Stone tools offer valuable insights for early hu-
man toolmakers, including their production tech-
niques, life patterns, and transfer of things [2].
For instance, archaeologists analyze the assem-
bly order for investigating creation of stone tools.
Figure 1 shows an example of excavated stones,
which were restored. The restored mother rock
is referred to as the “Joining Material.” Join-
ing materials have played a significant role in the
analysis of human activities during this period.
Moreover, these joining materials have a signif-
icant educational value and can be displayed in
historical museums and educational institutions
[1].

However, the completion and analysis of relics
[1] is challenging. Even though relics are sub-
ject to measurement through scanning methods
[3] and several issues can be solved swiftly and
accurately by computational algorithms, the task
of reassembling stone tools remains intricate and
demanding.

Figure 1: Example of excavated stones.

Archaeologists manually reassembled stone
tools using traditional restoration techniques, as
shown in Figure 2(a). However, this approach
has two major limitations. First, the assembly
process is time-consuming because it requires the
identification of correctly matched surfaces by
trial and error. Second, the assembly and dis-
assembly of stone tools require special archaeo-
logical knowledge. These are challenging tasks,
because not all stone tools constructed from the
mother rock can be excavated.

(a) (b)

Figure 2: a) Traditional reassembly.
b) Making stone tools.

In recent years, several reassembly approaches
have been developed for the reconstruction of
fragmented archaeological artifacts such as pot-
tery and fresco wall paintings. However, the suc-
cessful application of these methods to reassemble
stone tools is limited for owing to the following
reasons: (1) Irregular shapes of stone fragments:
stone tools exhibit highly irregular shapes, mak-
ing it challenging for descriptor-based methods
to extract crucial features. The lack of dis-
tinct regional features on flake surfaces further
complicates the feature extraction process. (2)
Global matching algorithms have proven inad-
equate, considering the requirement for partial
matching between pairs of flake surfaces. The
previous study [16] introduced a method of stone
matching. [16] extracts the boundary of the flake
surface to determine the initial position. How-
ever, [16] the excessive computation time and dif-
ficulties with partial matching.

Therefore, our study introduces a new flake
surface matching algorithm designed to signifi-
cantly improve the computational time while ac-
curately accommodating partial matches. This
study aims to address these issues. The pro-
posed method involves aligning two flake surfaces
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based on the maximum number of matched con-
tour (edge) points. By introducing a tunable
matching parameter, a user can control the bal-
ance between the computation time and accuracy,
thus addressing a critical bottleneck in stone tool
reassembly.

The contribution of this study is a new fine-
tuned approach to flake surface matching that
utilizes the contour points of flake surfaces. This
approach not only enhances the efficiency of the
matching process but also proves effective in
handling the unique challenges posed by par-
tial matching scenarios. We confirmed that our
method was effective for reassembling stone tools.

2 Related Work

2.1 Stone Tools

Numerous stone tools have been manufactured
prehistorically through rock striking process.
Crafting a stone tool involves the repetitive ac-
tion of striking the edge of a rock with a pebble,
resulting in the peeling of flakes to modify and
refine the tool shape, as shown in Figure 2(b).
Within this archaeological context, an assembly
of stone tools, known as joining materials, rep-
resents a reconstruction in which the core and
flakes originate from the same rock. In addition,
the joining materials are dispersed across the ex-
cavation site. Restoration involves reassembling
these fragments to recreate the original composi-
tion and structure of a stone tool [1].

2.2 Reassembly Methods

Extensive studies have been conducted on the re-
assembly fractured objects. Huang et al. [4] in-
troduced a feature-based alignment method that
effectively addressed these scenarios and achieved
remarkable results. However, their method is
complex and, comprises various specialized al-
gorithms for tasks such as segmentation, multi-
scale feature extraction, correspondence determi-
nation, registration, collision detection, and su-
pervised learning. Consequently, implementation
and adoption of these methods pose significant
challenges. Brown et al. [5] proposed a method

specifically designed to reassemble fragments of
wall paintings. Willis et al. [6] presented a sys-
tem tailored to pottery shard reassembly.

In [7], an innovative method was proposed
for reassembling axially symmetric ceramic pots
from three-dimensional (3D) scanned fragments.
Their method addressed specific challenges with
ceramic artifacts, particularly axial symmetry.
Their approach is noteworthy because it incre-
mentally adds fragments using a beam search
technique. This significantly mitigates the false
positive matches. Their method not only im-
proves the match accuracy through geometric
descriptors but also facilitates the simultaneous
reassembly of multiple pots from mixed collec-
tions. However, the application of their technique
to the reassembly of stone tools is challenging.
Reassembly stone tools lack the axial symmetry
present in ceramic pots and require consideration
of the flake removal sequence from the core stone.

In [8], a new methodology for generating syn-
thetic 3D fragmented data was proposed to facil-
itate the evaluation of object restoration, partic-
ularly in the context of cultural heritage. Their
approach was designed to overcome the challenges
of limited availability of real test data. Their
method produces artificial fracturing from an in-
put object without physical simulation. In addi-
tion, their method uses a“cutter object”to create
new breaking edges and thereafter fragments the
object. It generates a large-scale fragment test
dataset from existing cultural heritage models.
These datasets have advantage of ground truth
(the input object before fracturing), which is of-
ten missed. However, it does not directly relate
to the reassembly stone tool task or reassembly
task. It focuses on the reverse process of reassem-
bling models.

In [9], a mesh-based approach to create restora-
tions integrated with broken objects was intro-
duced. Utilizing the 3D scanned meshes of
both broken objects and their intact counter-
parts, their method generates a restoration piece
by smooth. It focuses on objects for which the
missing parts are predictable, and its goal is to
restore the original form of the objects. However,
its application to the reassembly of stone tools
poses several challenges. First, it relies on the
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predictability of the shape of the missing part.
This condition is not satisfied in stone tool re-
assembly in which the shape and size of the flakes
are unpredictable. Second, the methodology is
mesh-based, whereas stone data were represented
in a point cloud. Finally, their proposed method
does not address partial matching or the sequen-
tial order of assembly, both of which are crucial
for stone tool reassembly tasks.

The “Fantastic Breaks” dataset [10] was de-
signed to facilitate machine learning study in au-
tomated reassembly by providing a comprehen-
sive collection of 3D scans of real-world broken
objects and their counterparts. It focuses on a
complete object reconstruction using predefined
models. The use of predefined models may not
align with the stone tool reassembly tasks. This
often requires addressing the unpredictable frag-
ment shapes and sizes. Machine learning ap-
proaches for stone tool reassembly may face chal-
lenges owing to the requirement for extensive,
well-prepared datasets and the computational de-
mands for processing large datasets. Stone tool
datasets are often characterized by a lack of ex-
tensive pretested data. A highly detailed point
cloud representation can limit the applicability
of machine learning methods. Specifically, our
datasets with 280,000 points per stone can strain
the GPU resources [11]. This renders the learning
process more challenging.

2.3 Matching Methods for Flake Surface

Iterative Closest Point (ICP) [12], Super4PCS
[13], fast point feature histograms (FPFH) [14]
and random sample consensus (RANSAC) [15] al-
gorithms are commonly employed in point cloud
registration tasks. Furthermore, these methods
have been adapted and applied to surface match-
ing scenarios such as flake surface matching.

The ICP algorithm [12], which is one of the cor-
nerstones of point cloud registration, has demon-
strated wide-ranging effectiveness in aligning 3D
surfaces. However, it may be difficult to ob-
tain an accurate initial alignment, particularly
in cases involving partial flake surfaces in stone
tools, where achieving a precise alignment can be
particularly challenging.

Super4PCS [13], recognized for its proficiency
in matching partial 3D shapes, efficiently iden-
tifies local surface correspondences. Consider-
ing this capacity, it is a compelling candidate for
adapting to the task of matching partial flake sur-
faces. The inherent ability of the algorithm to
handle partial matching aligns well with the re-
sult of the present study.

The FPFH [14] calculates the correspondences
and correspondence probabilities, providing valu-
able guidance for subsequent RANSAC [15]
matching algorithms. In [15], a robust method for
estimating transformation models between data
points is presented, particularly in the presence
of outliers, and is a crucial step in aligning partial
flake surfaces. Their approach, which utilizes the
FPFH [14] for the initial correlation, addresses
challenges related to partial matching and align-
ing surfaces with potentially irregular shapes.

Our previous study [16] focused on the same
task, considering the shape of the flake surface
by utilizing contour points, which is similar to
our approach. However, it was characterized by
prolonged computation times and limitations in
effectively matching partial flake surfaces.

3 Proposed Method

3.1 Overview

The input of our method comprised a collection
of point cloud of stone tools, acquired through
measurements, as described in [3]. Our proposed
reassembly method builds upon the pipeline out-
lined in [16], with a primary focus on reducing
the computation time and addressing limitations.
The pipeline is executed using the following pro-
cedure:

1. Extracting flake surface and identifying con-
tour points.

2. Finding the best flake surface among the can-
didate flakes. For each flake surface of the
core stone, a matching algorithm is run to
determine the optimal matching flake sur-
face. This operation calculates a transfor-
mation matrix and iterates the process until
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the best matching surface is identified within
the candidates.

3. Transformation of matched flake. All flake
surfaces associated with an unique flake
stone of the matched surface are transformed
by the transformation matrix.

4. Reconstruction. After integrating the
matched flake stone with the core stone, the
flake surfaces of the core stone are thereafter
reconstructed.

5. Iterative matching. The matching process is
iterated until all stone tools are successfully
matched.

In contrast to a previous study [16], our study
introduces several pivotal enhancements. Ini-
tially, the region growing algorithm [17] is em-
ployed to extract flake surfaces. However, the
algorithm challenges in capturing the boundary
points of flake surfaces owing to its sensitivity
of normal vector variation and curvatures near
sharp edges. To address this shortcoming, we
subsequently perform a boundary correction step
that has not been used in the previous study. In
addition, our matching algorithm features a tun-
able matching parameter that enables the opti-
mization of flake surface matching for enhanced
efficiency. This parameterized approach differs
significantly from that used in the previous study.
Although the D2 algorithm [18] is employed to se-
lect candidate part in the previous study, we de-
cide to employ our matching algorithm by tuning
the parameter for candidate ordering, as our can-
didate ordering improved without D2. Finally,
our method performs matching and reconstruc-
tion operations directly on the point cloud, as
opposed to the mesh-based approach used in the
previous study. This shift enhances the compu-
tational efficiency.

3.2 Extracting flake surface and
identifying its contour points

The region growing algorithm segments a point
cloud starting from a seed point and adding
neighboring points that satisfy the criteria of ge-
ometric features such as differences in point nor-

mals and curvatures. Near sharp edges, the large
amount of shape variation in these local geomet-
ric features can result in over-segmentation near
them. This is largely owing to the algorithm’s
sensitivity to abrupt changes in normal vectors
and curvatures.

In the region growing segmentation, the angle
threshold α limits the addition of point to those
with similar normal vectors in a region, ensur-
ing the smoothness of the region. The curva-
ture threshold c excludes points from the region
with abrupt changes in curvatures. The mini-
mum number of points l is the required number
of points for a region to be considered valid.

The algorithm categorizes segments as valid or
invalid based on the number of points they con-
tain. Regions that are over-segmented, particu-
larly near sharp edges, may be classified as in-
valid owing to their small size. If the number
of points belonging to a segment is less than l,
points in these invalid segments are considered
unsegmented points, as shown in the gray points
in Figure 3. These unsegmented points are cru-
cial, because they contain essential information
regarding the true boundaries of the flake sur-
faces. Therefore, our method corrects the bound-
ary of the region by merging unsegmented points
as a re-segmented operation.

(a) (b)

Figure 3: a) Result of the region growing with an
angle threshold α set to 1.5◦, a curvature
threshold c to 0.1 and the minimum num-
ber of point in a valid segment l to 500.
b) A case of the unsegmented point with
normal vector.

To correct the boundaries of the flake surfaces,
The points were re-segmented using five steps.
The first two steps are introduced in Point Cloud
Library [17]. Steps from 3 to 5 are additional
steps to correct boundary points of the segmen-
tation process. The detail of steps is as follows:
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1. Running the region growing segmentation
with the angle threshold α and curvature
threshold c.

2. The segments are categorized into two
groups based on the number of points. Re-
gions with a point count exceeding l are con-
sidered as valid segments, represented by the
purple, blue, green, and yellow points in Fig-
ure 3(a). Conversely, those with fewer points
are identified as over-segmented regions that
included unsegmented points, which are de-
picted as gray points in Figure 3(a).

3. Find the k nearest neighbors of each unseg-
mented point. The k is determined that at
least one point included in the valid segment
is selected as the nearest neighbor point.

4. For each unsegmented point:

(a) Determine if the neighboring points
belong to a valid segment. If a neighbor-
ing point belongs to a valid segment, that
segment is considered a bordered segment
with the unsegmented point. Thus, the un-
segmented point is a candidate of merging
to bordered segment. This scenario is vi-
sualized with the unsegmented point as a
light gray point and the neighboring point
as a light purple point in Figure 3(b). The
neighboring point is considered a border
point. When two or more neighboring points
are found in the same valid segment, select
the nearest neighboring point as the border
point.

(b) Calculate the angle ϕ between the
normal vectors of border point invalid seg-
ment and the unsegmented point, illustrated
asm and n in Figure 3(b), respectively. This
calculation is computed by Equation (1).

ϕ = arccos

(
n ·m
|n||m|

)
(1)

(c) Merge the unsegmented point into
the bordering valid segment with the min-
imum degree of ϕ.

5. Repeat step 4 until all unsegmented point
have been merged into valid segments.

After extracting the flake surface using the re-
gion growing segmentation with the boundary
correction step, the next step involves identify-
ing the contour points of the flake surface. First,
a fitting plane is computed for the flake surface
using Principal Component Analysis [19] to en-
sure an accurate representation. Subsequently,
all the points within the flake are mapped onto
the fitting plane, thereby effectively aligning them
with the surface morphology. Finally, a two-
dimensional concave hull algorithm [20] is exe-
cuted. This crucial step aids in the precise iden-
tification of contour points in the clockwise direc-
tion and offers valuable insights into the charac-
teristics of the flake surface.

3.3 Reassembly

Lithic materials exhibits distinct characteristics
representing the joining surface shape and sep-
aration from the reassembly of other fractured
objects [16], as shown in Figure 4. The first dis-
tinguishing property is the sequence of flake gen-
eration from a single core [21]. Unlike arbitrary
flake matching, stone tool reassembly requires a
sequential order. For instance, if flake A precedes
flake B in the peeling process, then, considering
the sequential extraction of flakes from the core
stone, the matching procedure entails a reverse
order.

Figure 4: Case of making a stone tool (flake A is
peeled first followed by flake B).

The second property pertains to the flat and
smooth of most flake surfaces in the matching.
This is because of the capacity of the mother
stone to divide sharply [1]. Consequently, con-
ventional matching algorithms that rely on sur-
face features may not be suitable.

The third property arises when a single flake
surface can fracture into several fragments. As
shown in Figure 4, the matching of flake A re-
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quires prior matching of flake B with the core
stone to create flake surface Fc, which is a com-
posite derived from flake surfaces F1 and F2.
Consequently, the matched flake surfaces required
a reconstruction process to identify the subse-
quent surface.

In our approach, stone cores are designated
manually, initiating the matching process on the
flake surfaces of the core stones. As our dataset
comprised multiple core stones, they are reassem-
bled in succession. Each flake surface of the core
stone is matched with every flake surface of the
flakes to identify the best match. To enhance
the efficiency and reduce the number of matching
tasks, the candidate order for each flake surface
is calculated. This order is sorted based on the
corresponding candidate score.

3.3.1 New fine-tuned flake surface matching
algorithm

A fine-tuned matching algorithm is developed for
two purposes during reassembly. It is designed to
calculate both the candidate and matching scores
in pairwise matching. The matching algorithm
calculates a matrix Mst, by which a source sur-
face in the candidate stone is mapped onto a tar-
get surface in the core stone. The algorithm cal-
culates both the candidate and matching scores
by tuning the matching parameter n, which de-
termines the level of detail during the matching
process.

Figure 5 shows the difference between the can-
didate and matching scores for different values of
n. For instance, when the matching parameter
n is set to 6, the algorithm works on all combi-
nations between every 6 points in the target sur-
face and source contours. When it is set to 12
as an example, the algorithm works on all com-
binations between every 12 points in the target
and source contours. In this case, the number of
combinations is reduced, and the working process
faster than n is set to 6. In contrast, the accu-
racy tends to decrease depending on the contour
shape. Therefore, n is determined by considering
the balance of speed and accuracy.

Our reassembly method requires less computa-
tional time to calculate the candidate score. How-

Figure 5: Tuning the precision parameter.

ever, the matching accuracy must be high when
refitting a candidate for the core stone and calcu-
lating the matching score.

A five-point set {pi, pi+n, pi−n, di, ct} is con-
structed, where pi is i-th contour point of the
target surface t, n is the matching parameter,
pi+n and pi−n are separated from pi by n, ct
denotes the center point of the target surface,
and di denotes the centroid point of the triangle
whose vertices are pi+n, pi+n, and ct. Similarly,
another five-point set {pj , pj+n, pj−n, dj , cs}
is constructed in the same manner on the source
surface s, as shown in Figure 6.

The normal vector ki of the triangle, control
vector mi, and centroid di of the triangle are cal-
culated using Equations (2), (3), and (4), respec-
tively. All the points and vectors are constructed
in the same manner on the source surface. The
3D rotation matrix Rij is determined by satisfy-
ing Equation (6) owing to ki ⊥mi and kj ⊥mj .
The 3D translation matrix Tij is calculated using
Equation (5). The overall transformation matrix
Mij is thereafter computed using Equation (7),
integrating both rotation and translation to fa-
cilitate transformation in a 3D space.

ki = (ct − pi−n)× (pi+n − pi−n) (2)

di = (pi+n + pi−n + ct)/3 (3)

mi = di − pi (4)

di = Tij · dj (5)

{
ki = Rij · kj

mi = Rij ·mj

(6)

Mij = Tij ·Rij (7)
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Figure 6: Mapping a source into a target surface.

Equation (8) computes error metric e at point
pi, which is the contour point of the target sur-
face and determines the minimum distance be-
tween pi and any contour point p′

j on the trans-
formed source surface by Mij . The number of
matched target contour points rij is calculated us-
ing Equation (9), where Es denotes the maximum
edge length in the concave hull [20]. The match-
ing transformation matrix Mst, which aligns the
source surface s to the target surface t, is se-
lected based on max rst, which is the highest
value of rij as shown in Equation (10). Algo-
rithm 1 outlines our flake surface matching algo-
rithm; nt and ns denote the respective numbers
of contour points; ct and cs denote the center
points; n denotes the matching parameter in the
input; Mst denotes the matching transformation;
max rst denotes the highest number of matched
contour points in the output.

e(pi) = min(|pi,p
′
j |); j, i+ = n (8)

rij =
∑
i+=n

{
1, if e(pi) < n · Es,

0, otherwise
(9)

max rst = max(rij) (10)

The uniform point density of the dataset en-
ables a straightforward representation of the
matched area using the number of correspond-
ing points. In this context, qi denotes any point
on the target surface t, whereas qj is a point on
the source surface s that is nearest point to the
tangent plane of qi.

The two orthogonal distances can be calculated
by surface s and t. One is the distance from the
tangent plane of qi to qj , and the other is the
distance from the tangent plane of qj to qi. In
our method, if both distances are less than dc and
the distance between qi and qj is also less than
dc, qi is identified as a correspondence point of
qj . dc is determined 1.5 by experiment.

Subsequently, matched point pairs of surface s
and t are derived and the matched surface per-
centages are determined using Equation (11). In
this equation, Pu denotes the matched area per-
centage of the surface u, Nu denotes the number
of corresponding points of the surface u, Tu de-
notes the total number of points on surface u.
Specifically, Pt and Ps are the instances of Pu for
the target surface t and s, respectively. Pt and Ps

are indicated the percentage of each matched sur-
face. Moreover, the matching score, denoted as
Sst, or candidate score, is computed using Equa-
tion (12), where max rst denotes the number of
matched contour points, and Pt and Ps represent
the matched surface percentage of the target and
source surfaces, respectively.

A higher Sst value indicates a greater level of
matching between the target t and source s sur-
faces, implying that there are more matched con-
tour points and a larger matched area between
them. Conversely, a lower Sst value implies a
lower matching level, indicating fewer matched
contour points and a smaller matched area be-
tween the surfaces.

Pu =
Nu

Tu
(11)
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Algorithm 1: Flake Surface Matching
Algorithm

Input : contour points of the target,
nt, ct, contour points of the
source, ns, cs, n

Output: Mst, max rst

M′ ← ∅;
for i← 0 to nt do

pi ← i-th contour point of the target;
for j ← 0 to ns do

pj ← j-th point of the source;
Mij ←
getTransformMatrix(pi, ct,pj , cs, n);

// by Equation 7

M′ ←M′⋃Mij ;
j + = n;

end
i + = n;

end
rst ← 0;
foreach Mij in M′ do

S′ ← {p′
j | p′

j = Mij · pj , pj is any

contour point of the source };
rij ← 0;
for i← 0 to nt do

pi ← i-th contour point of the
target;
e = min ∥pi − p′

j∥, p′
j ∈ S′;

if e < Es · n then
rij + = 1;

end
i + = n;

end
if rij > max rst then

max rst ← rij ;
Mst ←Mij ;

end

end

Sst = max rst
√

PtPs (12)

3.3.2 Flake surface reconstruction

The process of reconstructing the original flake
surface involves the detection and integration of
divided flake surfaces. Figure 7 shows a vi-
sual representation of the reconstruction, with
the flake surfaces Fa in blue and Fb in green.
The reconstruction proceeds through the follow-
ing steps:

Figure 7: Flake surface reconstruction.

1. Each pair of flake surfaces Fa and Fb from
matched flakes undergoes a search for the
closest contour point pbj of Fb for each con-
tour point pai. If the distance between pai

and pbj is less than the threshold named dr,
the pair is designated as a corresponding con-
tour point pair, red points in Figure 7.

2. Calculate the angle between na and nb, av-
erage normal vector of Fa and Fb, respec-
tively. In addition, the number of corre-
sponding pair is counted.

3. The corresponding pair derived by Step 2 is
higher than the threshold w and the angle
between na and nb is less than the threshold
wθ, then the flake surface pair Fa and Fb is
merged into a single flake surface Fc.

4 Results and limitation

The implementation was performed on a PC with
an Intel Core i7-10700 CPU and 16 GB mem-
ory. The experiment involved testing data from
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43 stone models, as shown in Figure 8. The data
could be reassembled into three groups. No.01
and No.20, shown in thick red box are the core
stones and Group 1 and 2, respectively. The stone
tools belongs to Group 3 are role of dummy data
for assembling Group 1 and Group 2. There were
12,300,222 points, with an average of 286,052
points per stone.

Figure 8: Experiment data.

4.1 Experimental Results

This section describes the evaluation and experi-
mental results. First, we examined an evaluation
score and execution time according to the tun-
able matching parameter n, when n is changed
from 1 to 12. Second, we compared our method
with related methods. Thereafter, we presented
experimental results. Finally, we compared our
results with the previous study [16].

To assess the accuracy of the resulting shape,
we calculated the evaluation score which is how
the matching surface shape coincides. To achieve
this, Equation (12) which indicates the surface
coincident equation between surface s and surface
t, was used as follows:

Se = Sst

∣∣
n=1

(13)

where Se means score of the surface coincident.
To evaluate how to match the surface shape
Equation (13) was applied to compare the result-
ing shape of other methods. In Equation (13), we
set n to 1 to be fair to the shape evaluation when
we evaluate the resulting shape. In other words,

all points belonging to surfaces s and t are used
to evaluate the resulting shape. If Se is high, it
means that the shape is more match.

Figure 9(a) illustrates that the evaluation score
Se for the four matching pairs when the match-
ing parameter n varied from 1 to 12. Figure 9(b)
shows the computation time for the same param-
eter variations. Figure 9(a) shows the highest
scores for each pair, indicated by red circles. As
shown in Figure 9(a), three of the four had high-
est scores when parameter n was set to 6. In con-
trast, Figure 9(b) shows the computation time
of the four matching pairs. The average com-
putation time of each matching pair for param-
eter n =6 was 1.52, and that for n =4 was 6.87
s. This shows that when n =6, the computa-
tion time is approximately 4.5 times faster than
when n =4. Therefore, to balance computation
time with accuracy—as reflected by the evalua-
tion score—in the performance of the algorithm,
we set n =6 for the comparative analysis.

We compare our method and previous works.
The comparison involved benchmarking our
matching algorithm against Super4PCS [13] and
FPFH-SACIA [14] with 100 iterations employed
for partial matching tasks. For a fair comparison
across all methods, we applied Se, the evaluation
score, calculated by Equation (13).

The ground truth was manually aligned to im-
itate the real reassembly results achieved by ar-
chaeologists, thereby providing a benchmark for
evaluation. Table 1 summarizes the results of
this comparison. In this table, column “t” de-
notes the ID of the target surface, formed by
combining the stone identification and flake sur-
face ID(e.g.,“01 0” indicates core stone ID “01”
and flake surface ID “0”). Similarly, column “s”
refers to the source flake surface ID, following
the same identification pattern. “S4PCS” rep-
resents the absolute difference between the eval-
uation score of Super4PCS and the evaluation
score of the ground truth. “FPFH” and “Our”
indicate the same manner. These differences are
calculated using Equation(14), where D denotes
the absolute difference, Sgt denotes the evalua-
tion score of the ground truth, and Se denotes
the evaluation score of the respective algorithm.
In this table, the proposed flake surface matching
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algorithm yields the closest evaluation score to
the ground truth across all the target and source
pairs. The performance is graphically presented
in Figure 10. These comparison results highlight
that our algorithm performed better than existing
methods for flake surface matching, particularly
partial matching.

D = |Sgt − Se| (14)

(a) Relationship between n and the evaluation score Se.

(b) Relationship between n and the computation time.

Figure 9: Parameter sensitivity test.

Table 1: The absolute difference between the
ground truth and the evaluation score.

t s S4PCS FPFH Our

01 14 12 1 331.4 374.6 1.7

01 1 6 1 142.9 115.8 19.1

01 0 07 0 248.3 157.6 21.5

01 5 10 3 162.8 157.2 6.5

(a) 01 1 vs 06 1.

(b) 01 5 vs 10 3.

Figure 10: Visual representation of comparison re-
sult.

We describe the experimental results of our
method. The segmentation process for extract-
ing the flake surfaces requires the estimation of
point normal vectors and point curvatures. Pre-
vious studies [22] and [19] are employed for nor-
mal vector estimation and point curvature cal-
culation, respectively. During segmentation de-
scribed by Section 3.2, the parameters are tuned
as follows: the angle threshold α is set to 1.5◦,
curvature threshold c is set to 0.1, minimum num-
ber of points for a valid segment l is set to 500.
The number of nearest neighbor k is set to 4 in the
boundary correction step. The dataset in Figure
8 is segmented, extracting 311 flake surfaces and
averaging 7 surfaces per model for the matching
process. Figure 11 shows the segmentation re-
sults for point cloud No.10. Figure 11(a) displays
the point cloud with point normal vectors, while
Figure 11(b) shows the outcome of region grow-
ing segmentation using [17], where unsegmented
points are shown in gray color, resulting in 67962
unsegmented points of 276336. In contrast, Fig-
ure 11(c) shows our boundary correction result,
which extracts 8 flake surfaces, and all points are
segmented. In Figure 11(b), (c), and (d), the var-
ious colors represent different flake surfaces, and
the contour points are highlighted in red. Figure
12 (a) and (b) show the results of the segmen-
tation for stones No.06 and No.07, respectively.
The left side of each figure shows the result of the
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region growing, and the right shows the result of
the boundary correction step. As shown in Figure
11 and 12, our method enables to correct bound-
ary.

(a) (b) (c) (d)

Figure 11: Result of the boundary correction.
a) Point cloud.
b) Result of region growing segmentation.
c) Result of our boundary correction step.
d) Result of extracting contour points.

(a) (b)

Figure 12: Result of the segmentation.
a) No.06.
b) No.07.

Figure 13 shows the matching results between
the two flake surfaces 01 1 and 06 1. The cor-
relation between the two surfaces is shown in
Figure 13(b). Green points represent correlation
points, red points represent unmatched surface
points and yellow points represents matched con-
tour points, and blue points indicate unmatched
contour points on the target surface.

Figure 14 shows a matching scenario in which
flake surfaces require reconstruction for align-
ment. Three flake surfaces of stone tools No.10,
No.06 and No.16 were reconstructed to achieve
alignment with the surface of stone No.17.

Tables 2 and 3 summarize the specific details
of matching Groups 1 and 2. In these tables,

(a) (b)

(c) (d)

Figure 13: Result of flake surface matching.
a) Stone models No.01 and No.06.
b) Correspondence between flake surfaces
01 1 and 06 1.
c), d) Result of matching in different
views.

columns “t” and “s” maintain the same format
as that in Table 1, denoting the respective target
and source flake surfaces. The “Order” column
signifies the order of flake surface for the best
matching, determined by the candidate score.
“Time” represents the duration required for com-
puting the fitting transformation matrix for each
pair. For instance, finding the best match for
flake surface 01 1 in Group 1 requires 44.7 s.
On average, each matching process uses approx-
imately 7.45 s per pair, considering 6 (candidate
order) matching times. All flake surfaces initiated
matching from stone core No.01 and No.20. Dur-
ing the experiment, the maximum edge length in
concave hull Es was set to 0.5 and the match-
ing tune parameter n was set to 6 for matching,
16 for ordering the candidates. Additionally, we
defined two distance thresholds, dc and dr, both
set to 1.5. The threshold w is set to 30, and the
angular threshold wθ is set to 15 degrees.

Group 1 resulted in the reassembly of 16 stone
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(a) (b) (c)

Figure 14: Reconstruction result.
a) Reconstructed flake surfaces of No.6,
No.10 and No.16.
b) Source flake No.17.
c) Result of matching.

tools, whereas Group 2 was reassembled of 16
stone tools. Flake stone No.14 remained un-
matched using our method, as explained in detail
in Section 4.2. Figure 15 shows the final matching
results for both groups, accompanied by images
of the manually matched imitations.

Table 4 summarizes the comparison result of
our method against our previous study [16] for
two groups of stones. In the table, “N.Dis” in-
dicates the normalized distance measurement in
millimeters, introduced in previous studies [16],
[23]. This measurement method is utilized to
identify the most compatible flake surfaces in
their studies. It provides a standard to measure
the difference between two flake surfaces on a unit
area. Essentially, a smaller normalized distance
between the surfaces indicates a superior match,
signifying a closer similarity or better alignment
between two flake surfaces. The column “Time”
records the computation time for each method in
seconds. The computation time for the previous
method is normalized to account for the differ-
ence in CPU. Our study was tested on the Intel
Core i7-10700, while the previous study utilized
an Intel Core i7-4790. The normalization factor
of 2.68, derived from the relative floating-point
math speed of the two CPUs [24], is applied to
the computation times of the previous method to
utilize a fair comparison.

In Group 1, our method completed the task

in 400 seconds, whereas the previous study re-
quired 5912 seconds. In Group 2, our method
required 290 seconds, compared with the previ-
ous 1641 seconds. In the normalized distance
measurements, our method demonstrated an av-
erage of 0.012 mm for Group 1, in contrast to
0.033 mm reported in the previous study. Sim-
ilarly, for Group 2, our method achieved 0.016
mm, compared with 0.027 mm in the previous
study. Moreover, we successfully addressed the
limitation related to partial matching, allowing
us to match 4 more stones in Group 2 and ulti-
mately reassemble all the stones in that group.

Table 2: Reassembly of Group 1

t s Order Score Time(s)

01 14 12 0 1/260 417.71 27.22

01 1 06 0 6/250 188.40 44.70

01 4 10 6 2/243 306.41 20.96

01 0 07 0 1/234 459.82 37.23

01 49 05 1 1/225 378.01 10.37

01 43 16 0 2/218 219.58 29.09

01 55 11 3 2/209 175.32 19.08

01 39 17 0 1/205 578.64 29.75

01 57 02 0 4/203 140.52 15.20

01 53 18 1 1/193 281.97 37.58

01 59 13 1 1/187 435.26 25.39

01 66 08 3 1/185 554.52 11.05

01 63 19 0 4/178 346.89 57.80

01 64 15 0 3/172 315.48 23.83

01 68 04 1 6/166 147.44 11.11

Total time: 400.36

4.2 Limitation

Figure 16 shows a scenario in which proposed
method could not correctly match for stone
No.14. Red circles indicate the correspondence
of the correct matching. Matched contour points
of the two flake surfaces are indicated in yellow,
whereas the unmatched contour points are pre-
sented in blue. Our matching method is designed
for alignment based on the maximum number of
matched contour points max rst. However, in
this case, max rst did not achieved the correct
matching. Therefore, our method encountered
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Table 3: Reassembly Group 2

t s Order Score Time(s)

20 10 34 1 1/162 442.66 7.01

20 9 27 2 1/153 360.03 14.29

20 10 36 0 2/146 229.89 19.12

20 5 33 6 1/138 331.59 6.72

20 2 25 2 1/132 219.45 18.61

20 7 31 1 2/127 217.92 18.76

20 12 26 0 4/117 196.15 51.69

20 18 29 0 2/108 234.27 29.87

20 33 31 0 5/102 302.02 33.77

20 5 30 2 3/99 278.34 17.40

20 38 28 1 2/91 305.22 13.58

20 43 35 2 1/83 408.63 7.76

20 0 22 0 3/79 166.33 18.52

20 44 23 3 2/74 60.67 26.32

20 54 24 1 1/64 60.12 6.57

Total time: 289.98

Table 4: Comparison table with previous study

N.Dis (mm) Time (s)

Group 1
Our 0.012 400

Previous 0.033 5912

Group 2
Our 0.016 290

Previous 0.027 1641

difficulties in this scenario. In the experiments,
this case occurred only once.

5 Conclusion and future work

In this study, we introduced a novel matching al-
gorithm for stone tool reassembly based on con-
tour points derived from flake surfaces. Our ap-
proach addressed the critical challenges encoun-
tered in a previous study [16], resulting in sig-
nificant reductions in computation time and im-
provements in partial matching.

However, it is essential to acknowledge the lim-
itations of our method, particularly in cases in
which maximum contour point matching does not
yield a correct match. Although these instances
are rare, they should be highlighted in future
studies.

(a) (b)

(c) (d)

Figure 15: Result of reassembly.
a), b) Reassembled results by our method.
c), d) Reassembled flakes of two groups.
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