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Abstract

Ancient stone tools excavated from ruins are important materials for archaeological research. The manufacturing process
of stone tools is revealed by frequently assembling and disassembling the joining materials. Each stone tool is stored in a
bag with its identification number and photo. However, storage and management of stone tools may occur human errors,
such as mis-recognition and mistaking of the storage bag. This study proposes an image-based identification method to
match each stone tool with its corresponding storage bag. Two commonly used stable postures were defined for each stone
tool. The collected image dataset is used for deep learning of an untrained CNN model and seven pre-trained models.
The experimental results showed better accuracy and processing speed than those of previous research. Finally, three of
the models with high classification performances are selected to construct the detector with the YOLO framework for
practical scenario.
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1 Introduction

Stone tools and their fractured objects play an impor-
tant role in understanding the relationship between
stone tools and human organizational strategies and
in finding evidence for the origin and spread of stone-
tool technology [1, 2]. For instance, the stone tools
were made by crushing large mother rocks by hit-
ting them with stones or bones, and arranging them
into shapes suitable for their intended use. The col-
lection of excavated stone tools that are combined to
reconstruct the original mother rock is called join-
ing material. To investigate the joining material in
the prehistory period, stone tools excavated from ru-
ins are cleaned, numbered, and categorized. To re-
veal the process of making stone tools, archaeologists
use these stone tools to assemble and disassemble the
joining material through trial and error.

To avoid trial and error, it is crucial to obtain the op-
timal spatial arrangement and document the assembly
orders for guiding the assembly and disassembly op-
erations. Takahashi et.al [3] proposed a partial match-
ing method to reconstruct the spatial arrangement of
the stone tool point clouds used in the joining ma-
terial. Yang et.al [4] visualized the spatial arrange-
ment by a hierarchical tree in which each stone tool
is represented by the 3D shape data in each node. Al-
though the visualization of the spatial arrangement is
easy to understand, it still takes time to find the ac-
tual stone tools according to the identification num-
ber while reassembling the joinery materials. Be-
cause the correlation between the actual stone tools
and the data needs to be established. To establish
such a correlation, general archaeological centers and
similar institutions typically opt for directly inscrib-
ing data onto the surface of an artifact. However, as
shown in Fig. 1, LANG CO., LTD. opts to store each
stone tool in a bag and use a piece of paper with the
identification number and the PEAKIT image (typi-
cally a photograph) affixed to the bag [5]. This ap-
proach ensures that the surface of a stone tool remains
unobstructed by text or markings. The assembly or-
der can be represented by recording the order of the
identification numbers. Tanaka et.al [6] proposed a
video recording method to assist the reassembly of
components by recording and reproducing the order
of disassembly. However, in the case of stone tools,
once mixed with other stone tools during disassem-

bly, it is also difficult to recognize each stone tool ac-
cording to the storage bag. Manual management of
a number of stone tools may also lead to mistakes,
such as returning stone tools to incorrect bags, losing
identification paper pieces, or other manual manage-
ments along with stone tool investigation. To avoid
such mistakes during manual managements, identify-
ing stones automatically will bring great convenience.

Figure 1: The current stone tool management system.

This paper proposes a novel stone identification
method based on stable posture images using the con-
volutional neural network (CNN) framework. The
proposed method needs to capture the image of the
stone tools using a camera above the working desk.
The posture in which a stone can be placed on a desk
is referred to as a stable posture. When observing a
stone in such a stable posture from directly above, the
in-plane rotation caused by different viewing angles
result in different image rotation angles in the cap-
tured images, hereinafter referred to as different an-
gles. Since different postures of a stone may have dif-
ferent appearances, all the appearances of stable pos-
tures should be considered. In this study, only thin
stone tools with two stable postures are considered.
A number of images are collected for each stable pos-
ture, and these images are assigned with a unique
class label, representing its identification number and
its stable posture index. We firstly make a dataset
with the images only containing a single stone tool by
cropping out the desired region. Then, a customized
CNN model was built and trained on this dataset.
In comparison, seven pre-trained models are trans-
ferred to verify the classification ability to distinguish
one stable posture of a stone from another posture or
other stones. Several evaluation metrics were con-
sidered comprehensively to select the optimal mod-
els. Finally, three promising models are selected to
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construct the detector using the YOLO framework.
The trained detector can output the predicted label
for each stone. Using the predicted label information,
users can easily recognize the stone and put the stone
back into its corresponding bag.

2 Related work

Considering the stones have complex 3D shape fea-
tures and show different appearances from different
sides, the point cloud will be the first choice to de-
scribe the shape features. To compare the point cloud
of a stone with that of all stones in the database, a
common solution is to perform local registration and
evaluate the difference with each category. Local
registration algorithms assumes point cloud pairs to
start in close alignment and then refine their align-
ment. The most popular local approach is Itera-
tive Closest Points (ICP), both point-to-point [7] and
point-to-plane [8] along with their many variants [9].
These methods guarantee convergence only when the
scanned pairs are roughly aligned to start with. When
point cloud pairs start in arbitrary initial poses, regis-
tration requires solving a global problem to find the
optimal alignment through a rigid transform across
the 6 degrees of freedom (6DOF) space, encompass-
ing translations and rotations. A popular strategy is to
invoke RANSAC to find the aligning triplets of point
pairs [10]. Various alternatives have been proposed
to improve the complexity using special four point
basis instead of triplets as basis in RANSAC, such
as the 4PCS algorithm [11], and SUPER 4PCS al-
gorithm [12]. Although the point cloud registration
can be used to accurately compute the difference with
each category, it is time-consuming to register the un-
known stone to all categories and find the desired cat-
egory with smallest registration distance. Instead of
using all points in the point cloud in the matching pro-
cess, a shape-based matching scheme was proposed to
match the unknown object mask in videos with known
3D model silhouettes [13]. The matching score was
calculated for each 3D model in the video, and the
highest score was used as the prediction result. This
method requires massive matching pairs between var-
ious object poses in the video and all 3D models, re-
sulting in a low processing speed. Recently, a region
proposal network was proposed to detect semantic

parts inside multiple views for 3D shape classifica-
tion [14]. This method embeds part- and view-level
attention mechanisms into the deep learning frame-
work to highlight the discriminative parts from the 3D
global features and discriminative views from multi-
ple viewpoints. However, in contrast to the objects
of cars, chairs, and aircrafts used in their validation
dataset, the attention mechanism is not applicable to
stone tools because of the lack of protrusions in the
semantic parts. Many deep-learning-based 3D point
cloud classification methods have been validated on
public datasets of large objects, such as cars, chairs,
and aircraft. These objects have clearly discriminative
shape features when compared to each other. How-
ever, stone tools have few protrusions and textures
that distinguish them from other stone tools. Apply-
ing deep learning-based methods to stone tools is still
a challenging problem, and there is few literature re-
ported on the subject.

On the other hand, as a crucial topic in the field of
computer vision, image-based object recognition has
proven to be effective and rapid over the past decade,
especially in the case of facial recognition. However,
most faces are depicted within rectangular regions in
2D images, and the shared facial features lead to a
fixed arrangement of characteristics, such as the eyes,
nose, and mouth typically appearing at specific posi-
tions within the rectangular region. In contrast, the
size and shape of stone tools are uncertain, and obsid-
ian may present a textureless appearance under light
illumination, making feature extraction challenging
due to extensive reflections. Therefore, image fea-
tures have been used as an unreliable feature for aux-
iliary screening. For example, a previous study [15]
used the contours extracted from stone tool images to
narrow down the search range and then used ICP to
find a few candidates for the best match. The image
contour can indeed filter out a few candidates to as-
sist with subsequent point cloud matching. However,
once the correct solution does not appear in the can-
didate list, the opportunity to find the correct solution
is also missed in the subsequent point cloud match-
ing. To alleviate this issue, the solution is to increase
the number of candidates filtered out. However, as
the number of candidates increases, the time taken to
match the reference to all candidates increases expo-
nentially.

In this paper, we focus on applying image ob-
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ject recognition techniques to stone tools. A well-
established image classification framework based on
CNN is used to evaluate the classification perfor-
mance of stone tools. However, to successfully train
the deep learning model, three main challenges need
to be addressed. Firstly, deep learning typically re-
quires a large dataset for training. Capturing images
of individual stone tools one by one would be labor-
intensive. To build the detector for recognition from
a scene image, annotating the rectangular region for
each stone tool in all images is also indispensable.
Secondly, stone tools are usually placed on the desk-
top in random orientations each time they are pre-
sented, making it difficult to define predefined an-
gles for their positioning. This necessitates a recog-
nition system capable of handling all possible angles.
Moreover, thinner stone tools often have two distinct
sides, each displaying different appearances. This de-
mands the recognition system to account for at least
two sides. Finally, it is essential to establish the con-
cept of ground truth. This involves defining the appro-
priate categorization of stone tools and ensuring that
each category contains a sufficient amount of data to
effectively discern distinguishing image features from
other categories.

3 Proposed Method

This paper proposes a stone identification method
based on stable posture images using the CNN. Ob-
ject recognition based on images has been developed
for decades[16, 17, 18]. Similar with the surface
point cloud, the stone image captured by monocu-
lar camera also contains the upper side and no oc-
cluded parts. To solve this problem, we build the
database according to different stable postures. Each
unknown stone is compared with all angles of both
stable postures of all stones in the database, and the
posture with the largest similarity is predicted as its
category information, ie. identification number and
posture index. To extract image features, a simple
custom untrained CNN model was constructed and
trained. Furthermore, to select the optimal feature
extraction CNN models, the pretrained CNN models
of AlexNet [19], GoogLeNet [20], SqueezeNet [21],
ResNet-18 [22], ResNet-50 [22], Inception-v3 [23],
and ResNet-101 [22], were transferred to extract dis-

tinguishing features for stones. For selecting fea-
ture extraction layers from pretrained models, trans-
fer learning has showed good performance compared
with untrained CNN models [24, 25]. All the pre-
trained networks require the replacement of the final
fully connected layer to fit the number of classes in
our task. After feature extraction, an end-to-end con-
volutional network is used for stone tool detection in-
spired by YOLO-v2[26], which shows good perfor-
mance without a complex processing pipeline.

3.1 Image Acquisition

The images of stone tools are acquired by the smart-
phone camera of iPhone SE (2nd generation) from
45cm straight above the desk, as shown in Fig. 2. To
keep the appropriate gap between stones and distance
to the edge of the captured image, 4 pieces of stones
are captured to an image together. Theoretically, by
setting the camera higher or changing to use cameras
with a wider photographing range, more stones can
be captured simultaneously. After acquiring an im-
age of the 4 stones, the stones are rotated in the plane
parallel to the desk and prepared to capture another
image. The image with in-plane-rotation is different
by lighting directions and position of shadows. How-
ever, both the image before and after rotation belong
to the same stable posture of the same stone. To ac-
quire the other stable posture of the stone, we manu-
ally flip the stone to make it front-side down and cap-
ture images using the aforementioned method. After
taking pictures of all the stable postures of all stones,
the database can be built by labeling these images.
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Figure 2: Image acquisition of stone tools.

Since we have 12 pieces of stones in the lab and
each stone has 2 stable postures, 24 classes are de-
fined and each class label is combined with the stone
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identification number and stable posture index. To or-
ganize the database effectively, we make 24 folders
named with the class label and each folder contains
the images belonging to its class. However, since
each image contains 4 pieces of stones and large area
of background, we crop the boundary box region of
each stone out to be saved as an independent image
file. When users place an unknown stone on the desk,
controlling the in-place rotation angle of the stone be-
comes challenging. Thus, the images in the database
should contain all possible in-plane rotation angles
for each stable posture. To achieve this goal, in ad-
dition to manually adjusting the stone tool to differ-
ent angles, an auto-rotation process is applied to all
images in the dataset. As shown in Fig. 3, the cap-
tured images are rotated counterclockwise to a se-
ries of successive angles. Subsequently, the rotated
bounding box of each stone is cropped out and stored
7

in the database.
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Figure 3: The database consists of stone patches
cropped from both captured images and
their rotations.

3.2 Feature Extraction

Stone tool detection needs to handle all possible rota-
tions and postures, which is different from general ob-
ject detection problems, such as face detection, pedes-
trian detection, and vehicle detection. The general
object detection method always employs a bounding
box to denote the position and size of the target ob-
ject and extracts useful features from the rectangular
area. However, the bounding boxes for stones have
different size and aspect ratio. Although all bounding
boxes are saved according to its original size and as-
pect ratio, they will be resized to fit the input layer of
CNN models for classification. However, the YOLO

framework learns to make proposals by anchors of
pre-defined sizes and its input layer accepts the whole
image, which does not have the resizing problem.

Previous image-based stone methods use the edge
characteristic to distinguish a stone from another. The
contour extraction algorithm can be used to extract
the stone edge information. However, the parameters
must be set manually according to different scenar-
ios, and the shadow may affect the extracted contour
shape slightly. Hence, the edge characteristic is less
reliable than color images because it ignores all the
color information inside the stone area.

In this study, color images are used to extract dis-
tinguishable features by the CNN architecture. To
validate distinguishing ability learned by the CNN
architecture, classification experiments are designed
to evaluate the performance on all 24 classes. If the
CNN architecture can classify these classes correctly
after training, the CNN architecture can be used to
identify any stones stored in the database. Firstly, a
custom CNN model with 15 layers was constructed.
The input layer was designed to accept an image size
of 100 x 100 x 3.

The four-layer module of a convolution layer,
batch normalization layer, rectified linear unit (ReLU)
layer, and max-pooling layer are repeated twice. The
convolution layer extracts a feature map from the in-
put image. The batch normalization layer is set be-
tween the convolutional and ReLU layers to acceler-
ate the training and reduce the sensitivity to network
initialization. The final module uses a fully connected
layer, a softmax layer, and an output layer to replace
the max-pooling module in previous modules. The
output layer contains 24 units to show the predicted
confidence of the input image. The unit with highest
confidence is used as the predicted class. This cus-
tomized network was designed to validate the classi-
fication ability with a simple structure.

In addition, seven pretrained CNN models
learned from ImageNet were fine-tuned: AlexNet,
SqueezeNet, ResNet-18, GoogleNet, ResNet-50,
Inception-v3, and ResNet-101. In the case of
AlexNet, the last three layers, i.e., a fully connected
layer, softmax layer, and classification layer, are re-
placed by new layers that fit the curb recognition task.
The other pretrained models require similar modifi-
cations in the last few layers before training on curb
images. In other words, the early layers are reused
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Figure 4: The architecture of YOLO-v2 detection network for stone identification from the entire image.

for image feature extraction. By freezing the parame-
ters in the early feature extraction layers, the training
process of transfer learning is much faster and easier
than training a network with randomly initialized pa-
rameters. The pretrained models are initially trained
to classify the images into 1000 classes of objects. In
our case, they are transferred to classify images into
24 classes of stones. However, the input images must
be resized to satisfy the requirements of the pretrained
model. For instance, AlexNet requires input images
with a size of 227 x 227 x 3, Inception-v3 requires
input images with a size of 299 x 299 x 3, and other
models require a size of 224 x 224 x 3. The training
results are reported in Section 4.

3.3 Detection

The aforementioned CNN architectures can be used
to predict the class of a small image patch. This patch
should only contains one stone normalized to the cen-
ter and no large area of background. However, they
cannot directly localize the stone region from the en-
tire image. To address this issue, the YOLO-v2 detec-
tion network was connected to the CNN feature ex-
traction architecture, as shown in Fig.4. The reason
of choosing YOLO-v2 is that it is currently the latest
version to support C++ code generation and we plan
to combine this work with our previous work imple-
mented in C++ code. According to the classification
performance, three promising CNN feature extrac-
tion architectures were selected to build the detector:
AlexNet, GoogLeNet, and ResNet-18. For instance,
to combine ResNet-18 with YOLO-v2, the first 140
layers were preserved for feature extraction. The fol-

lowing layers were replaced by nine layers specific
to YOLO-v2, which contains convolutional layers,
transform layers, and the final output layer. The trans-
form layers extract the activations of the last convolu-
tional layer and constrains the location predictions to
fit the locations of the ground truth. YOLO-v2 uses
anchor boxes to predict bounding boxes and to predict
the class label with a confidence score.

4 Experimental Results

The classification experiment was conducted to verify
whether CNN architectures can extract distinguish-
able features. Then, three promising CNN models
were embedded into the detection framework as fea-
ture extractors to detect stones automatically from en-
tire images.

4.1 Classification

A total of 10,418 stone images are acquired to store
in the database for classification experiments. Among
them, 1359 images are individually captured and ro-
tated for testing. 9059 images are used to train the
CNN models, in which 15% are randomly split out
for validation, and 85% for training. As shown in the
database part of Fig. 3, the stone images have different
sizes, such as 319x473x3, 529x583x%3, etc. The cus-
tom CNN model and seven other pretrained models
were evaluated on this database. To transfer weights
from the pretrained network learned from massive im-
ages from ImageNet, only a few layers of the pre-
trained CNN were replaced with new ones, and the re-
maining weight parameters in the original model were
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Figure 5: ROC curves of all classification models.

preserved. For example, in Googl.eNet, a fully con-
nected layer and a classification layer were replaced
to perform the new classification task, and the other
weights were preserved. For comparison, the same
initial parameter configuration was used. The ini-
tial learning rate was set to 1 x 1073, The stochas-
tic gradient descent with momentum optimizer was
used with a minibatch size of 64, weight decay factor
of 1 x 107*, and momentum of 0.95. The maximum
epoch number was set to 6. The class label links the
stone identification number and stable posture index
together. For instance, s39_0 means the stone with
identification number 39 and stable posture 0. For
each class label, the test images were considered as
unknown images to test whether the predicted label
matches the ground-truth label. The matched images
are considered as positive, and the dismatched images
are considered as negative. The ROC curves of differ-
ent models is shown in Fig. 5, where Googl.eNet has
the largest value of AUC, ResNet-18 achieves the sec-
ond place, and AlexNet is the third place. This result
means that these three models are robust to varying
prediction threholds.

To evaluate the classification performance of dif-
ferent models, accuracy, sensitivity, specificity, F1-
score, precision, AUC, and prediction time were used.
The calculation methods for these evaluation metrics
can be found in the appendix. Table 1 compares the
evaluation results of different CNN models. The best
results of each metric are highlighted in bold. The
prediction time is the time taken to predict all the 190
test images. The optimal model can be chosen ac-

Figure 6: The original images (left) and their corre-
sponding confidence maps (right).
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Figure 7: The PR curves of 3 detectors.

cording to different metrics. Inception-v3 had the best
performance in terms of accuracy, sensitivity, speci-
ficity, and F1-score, but this performance comes with
the long prediction time. GooglLeNet achieved the
highest specificity and AUC value. The custom CNN
required the least prediction time, mainly because of
its simple structure and the small size of the input im-
age. However, the balance between performance and
time cost is important when choosing a model. Espe-
cially for a practical stone identification system, the
classification must be accurate and fast. Because the
most accurate model of Inception-v3 did not achieve
a large gap than that of the second and third places,
we choose GoogleNet, ResNet-18, and AlexNet as
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Figure 9: Examples of detection failures.

our optimal feature extractors for building detectors.
Then, the sliding-window method was used to clas-
sify every possible position with a size of 350x350x3
on a large image of size 1080 x 1920 x 3 to calculate
the confidence map, as shown in Fig.6. The high-
confidence positions have a high probability to be a
stone. By comparing the original image with its cor-
responding confidence map, we find that not only the
actual stone positions but also their neighboring po-
sitions achieve high confidence values. This means it
is feasible for detector to extract bounding boxes con-
taining stones. In the next section, the three optimal
models of GoogleNet, ResNet-18, and AlexNetTo
are embedded into the detection framework.

4.2 Detection

Three feature extraction networks of the first 16 lay-
ers of AlexNet, the first 111 layers of GoogLeNet, and
the first 66 layers of ResNet-18 were used as feature
extractors and embedded in the YOLO-v2 framework
for detection. 2354 images are collected for train-
ing and 428 images for testing. Each image has 3
or 4 stones. The testing images are also captured in-
dividually to avoid duplication with the training im-
ages. The image size varies from 1080 x 1920 x 3
to 2121 x 2121 x 3 because of different rotation an-
gles. The ground-truth data contains the annotations
of the bounding boxes and their corresponding class
label. For comparison, the three detectors were con-
figured with the same initial parameters. The max-
imum epoch number was set to 10. The precision
recall curve is used to evaluate the performance of
the 3 detectors, as shown in Fig.7. To numerically
compare the curves, the evaluation metric of average
precision (AP) is used to evaluate both the ability of
the detector to find all stones and the ability to predict
correctly, which is also the average precision over the
curve. The calculation method of AP can be found
in the appendix. The AP values and average detec-
tion speed are shown in Table 2. YOLO-v2 with
ResNet-18 is the best model in terms of AP. However,
YOLO-v2 with AlexNet achieves the fastest detection
speed with a large compromise on AP. The detec-
tion speed is calculated on the PC of MacbookPro (14
inch, 2021), with CPU of Apple M1 Pro and mem-
ory of 16GB. The examples of successfully detected
examples are shown in Fig.8. Both square bound-
ing boxes and narrow ones are detected accurately.
However, there are also some cases that the detector
failed to detect, as shown in Fig. 9. There are 4 stones
and only 2 of them are detected. The main reason
for the failure is that the maximum confidence values
in all categories are still far below 0.5. For instance,
two successfully detected instances have confidence
scores of 0.4121 and 0.3623, while the confidence
scores for two undetected instances are even lower.
Certainly, it is possible to detect all instances by ad-
justing the confidence threshold, but this approach
would also introduce false alarms and lead to less ac-
curate categorization. To address this issue, we plan
to further perform a double-checking process using
point cloud matching for regions with insufficiently
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Table 1: Evaluation of transfer learning with different pre-trained CNN models. (Best results are highlighted in

bold)
Model #Layers Input Size  Accuracy Sensitivity Specificity Fl-score Precision AUC Prediction Time
CustomCNN 15 101x101x3 0.979 0.680 0.989 0.568 0599 0411 5.569
AlexNet 25 227x227x3 0.991 0.825 0.995 0.798 0.809  0.558 10.579
SqueezeNet 68 227x227x3 0.988 0.882 0.994 0.684 0.692  0.565 10.871
ResNet-18 72 224%224x3 0.990 0.895 0.995 0.750 0.804  0.540 16.482
GoogLeNet 144 224%224%3 0.995 0.955 0.998 0.856 0.869  0.568 17.889
ResNet-50 177 224x224x3 0.994 0.946 0.997 0.825 0.828  0.360 35.703
Inception-v3 316 299x299x3 0.996 0.961 0.998 0.887 0885 0414 58.623
ResNet-101 347 224x224x3 0.995 0.950 0.997 0.839 0.838 0374 73.446

high confidence scores. This approach aims to en-
hance accuracy, albeit at the expense of speed. How-
ever, in practical scenarios, it is worth exploring if a
slight decrease in speed can result in improved accu-
racy.

Table 2: The AP and detection time of 3 detectors.
(Detection time is calculated on the testing
image size of 1080 x 1920 x 3. Best results
are highlighted in bold)

Model #Layers AP Detection Time
YOLO-v2 (AlexNet) 25 69.40% 206.84ms
YOLO-v2 (GoogLeNet) 120 70.25% 477.57Tms
YOLO-v2 (ResNet-18) 75 96.57% 396.50ms

4.3 Discussion

Compared with the previously proposed method [15],
the proposed method (using a custom CNN as an ex-
ample) has the following advantages:

Firstly, less time is required to achieve similar ac-
curacy. In terms of accuracy, [15] selected the top five
best matches on the same dataset of 12 stone tools.
Three of them are not listed in the candidate table,
which means that they fail to be selected. Hence, the
accuracy was 75% (calculated using 9 correct sam-
ples / 12 test samples). Our custom CNN method
achieved an accuracy of 97.9%. In terms of time
cost, [15] needs five times the point cloud matching
for each stone tool, and the time for each matching
pair was 2 s. The time required to check each refer-
ence stone tool was 10 s. However, our method re-
quires 0.008 s (calculated as 5.569 s of total time cost
/ 1359 test images X 2 postures for each stone tool)
to complete the identification for each stone tool. The
difference in time may also be due to differences in
computer specifications: an i7-9700 CPU was used in
[15], and Apple M1 Pro was used in our work. On the
other hand, when there were no concerns about time

consumption, in [15], 30 candidates were retained for
each stone tool, and all 12 test samples were correctly
listed in the table, but the time cost reached 330 s.

Secondly, more convenient way to acquire data.
[15] used the 2D image contours to screen candidates,
and 3D point cloud registration to estimate the match-
ing score between each reference and each candidate.
Both 2D images and 3D point clouds are required to
obtain reference data, which requires a depth camera.
To build the database, a laser scanner is necessary to
obtain an accurate point cloud without occlusion. The
proposed method requires only a monocular camera.

Thirdly, potential to handle various working envi-
ronments. The result of [15] is based on the success-
ful extraction of contours for each stone tool. Con-
tour extraction is easily affected by lighting condi-
tions and image background. Moreover, the surface
point cloud captured by the depth camera may con-
tain noise, which may also affect the final precision.
The CNN-based image identification method used in
our study has the potential to handle various lighting
conditions and backgrounds.

5 Conclusion

A deep learning framework was proposed to identify
stone tools automatically from the images captured
by a monocular camera. A customized CNN model
and seven pre-trained models were trained for classi-
fication. By comparing all the models with evaluation
metrics, such as, accuracy, and prediction time. Three
promissing models were employed as feature extrac-
tion networks and embedded into the YOLO frame-
work to construct stone detectors. The detection per-
formance was evaluated by the average precision on
the stone image dataset. Through extensive exper-
iments and analysis of the results, the effectiveness
of the proposed method was verified, providing clear
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guidance on how to choose pre-trained networks for
stone detection. Future plans include improving the
accuracy and reducing the unnecessary processes of
the proposed method for practical use and estimating
the performance for more stones. To ensure the detec-
tion result to be correct, we also plan to combine the
image based recognition and point cloud matching for
double-checking.
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7 Appendix

7.1

Evaluation Metrics for Classification

Accuracy denotes the number of correctly labeled
samples. In this study, it denotes the proportion of
the correctly identified image numbers to the number
of test images, which can be written as

Accuracy = (ny + ny)/(nyp + ngp + Ny + Ngy).

-3:11 -
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where ny, denotes the number of true-positive sam-
ples, ny denotes the number of true-negative sam-
ples, ng, denotes the number of false-negative sam-
ples. Sensitivity is the number of correctly identified
positives divided by the number of true positives. In
this case, it denotes the number of correctly identified
curb images divided by all curb images, which can be
written as

Sensitivity = ng/(ng + ngp). )

Specificity is the the number of correctly identified
negatives divided by the number of true negatives. In
this case, it denotes the number of correctly identi-
fied non-curb images divided by all non-curb images,
which can be written as

Specificity = ny /(ngp + np). 3)

Precision is the number of correctly identified images
divided by the number of images identified as posi-
tives. In this case, it denotes the number of correctly
identified curb images divided by the total images
identified as curb images, which can be written as

Precision = ny,/(ny, + ngp). 4)

F1-score is the harmonic mean of the precision and
sensitivity, which can be written as:

2 X (Sensitivity X Precision)
Fl1-score =

6))

(Sensitivity + Precision)

AUC denotes the area under the corresponding re-
ceiver operating characteristic (ROC) curves.

7.2 Evaluation Metrics for Detection

Precision is calculated following Eq. 4. Recall is cal-
culated as

Recall = ny/(ny + ngy). (6)

The average precision (AP) is defined by:

1
AP = f f(Pdr, @)
0

where r denotes the variable of recall, and f(r) de-
notes the PR curve.
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