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Abstract

The Haniwa are a type of terracotta figurines from ancient Japan, which have been scanned and saved as

three-dimensional models composed of point cloud and triangular meshes for archaeological research. Although

these three-dimensional models can be used to analyze the production technique of the Haniwa, there are

several cases where archaeologists subjectively classify the Haniwa using only visual and qualitative observation

approaches based on the Haniwa features, i.e., the face, clothes, etc. Here, the need for a computer-aided

and quantitative evaluation method, using three-dimensionally measured point cloud, becomes evident. For a

quantitative evaluation of the Haniwa, the evaluation of face similarity is considered an important issue. As

the face is mainly composed of nose, mouth, and eyes, the face similarity of the Haniwa can be evaluated by

comparing the corresponding facial parts between individuals. However, shapes and placements of the same

facial parts for each pair of Haniwa have individual differences. Therefore, the face alignment to precisely

localise the facial parts and recoginize their shapes should be required. To achieve the aforementioned precise

alignment, a hybrid method combining ellipsoid-fitting-based segmentation and topological hole detection is

proposed, to extract the point cloud of the nose and locate the contours of the eyes and mouth. Besides the

face alignment, the quantitative evaluation essentially contains a process of comparing the faces by analyzing

the relationships between the facial parts. For the face comparison, when the facial parts are aligned, the point

clouds of the nose for each pair of Haniwa are registered through a scaling iterative closest point algorithm to

achieve a value for scale alignment. After the point clouds of all the facial parts for each pair of Haniwa are

aligned on the same scale to suppress scale error generated in production, their difference is calculated using the

standard iterative closest point algorithm to obtain point-based dissimilarity for each pair of Haniwa. Moreover,

owing to basic visual observation, the difference in the relative positions of the eyes and mouths with respect

to those of the noses was manually measured as another dissimilarity for face comparison. Our experimental

results demonstrate that the proposed method is effective for the similarity evaluation of the Haniwa through

the three-dimensional point cloud.

∗Part of the material in this article has been orally pre-
sented at conference NICOGRAPH 2019 [1]. This arti-
cle has been improved based on the peer-reviewed com-
ments at the submission of NICOGRAPH 2019, and
questions of the chair at its session.
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1 Introduction

The Haniwa [2] are a type of terracotta figurines
that were made for ritual use and were buried
with the dead as funerary objects during the Ko-
fun period (3rd to 6th centuries AD) of Japan.
Archaeologists mainly attempted to clarify in-
formation on their provenances with datings or
evaluate their artistic values. Specifically, the
archaeologists conventionally identified groups of
workers and individual workers from the human
Haniwa remains by the face, clothes, etc. and fur-
ther evaluated the findings using detailed manu-
facturing techniques and tools, through a visual
and qualitative observation approach [2]. How-
ever, a more quantitative evaluation of the human
Haniwa revealed that clear and subjective fea-
tures, such as the presence or absence of parts ex-
tracted through the visual observation approach,
could not satisfy objective evaluation require-
ments.

Recently, as three-dimensional measurement
devices have been developed, point clouds repre-
senting the surface of an object become easily ac-
cessible. Compared with conventional recording
methods such as photographs and rubbed copies,
the amount of data obtained through a three-
dimensional measurement is significant. Addi-
tionally, compared to a visual research, the three-
dimensional measurements can provide more ac-
curate and objective data. Therefore, a quanti-
tative evaluation method for extracting and com-
paring detailed three-dimensional information of
human Haniwa from the target point cloud is re-
quired.

To ensure precise facial evaluation results, the
objective and quantitative evaluation method
should be preferable to evaluate the Haniwa face,
because the face contains important manufactur-
ing information. Moreover, the facial parts, such
as nose, mouth, and eyes, need to be used pref-
erentially, because they are the most outstand-
ing features of the face. Facial alignment to pre-
cise localize the facial parts and determine their
shapes becomes important. As the Haniwa were
not produced in the same size owing to technical
limitations, for face comparison like a human be-
ing, the extracted point clouds of two individuals

need to be resized on the same scale using a sim-
ple and effective scale-aligning method. After the
scale alignment, a dissimilarity metric is required
for measuring the global distance between indi-
viduals directly based on point clouds. Moreover,
the difference in the relative positions of eyes and
mouths with respect to those of noses needs to
be measured as another dissimilarity metric for
face comparison because measuring relative posi-
tions is a common practice of humans for visual
comparison.
To overcome the above issues, this study ad-

dresses the following: (i) extraction of the facial
parts of the human Haniwa from the point cloud;
(ii) adjustment of the face in a same scale between
individuals; (iii) evaluation of the similarity be-
tween individuals by comparing the same facial
parts based on the two dissimilarity metrics. For
our proposed method, both usefulness of the face
alignment, applied to the three-dimensional point
cloud of human Haniwa, as well as effectiveness
of the dissimilarity metrices are confirmed in this
paper.

2 Related Studies

Thus far, studies that quantitatively evaluate
the Haniwa face through three-dimensional point
cloud data have rarely been introduced; however,
face alignment, which is the first step of the eval-
uation method, has been used for the human face
in the past three decades.
Facial alignment estimates the position of fa-

cial parts such as facial contour, eyes, eyebrows,
and mouth from the target image. It is vital to
facial recognition and can be realized using many
methods, including the active appearance model
(AAM) [3] and constrained local model (CLM)
[4]. Since sufficient extraction accuracy could not
be obtained, it was difficult to use these methods
in an actual environment prior to the develop-
ment of AI.
During the development of AI, Cao et al. pro-

posed a machine learning model, referred to as
explicit shape regression (ESR) [5]. ESR can
be considered as a transformation from a two-
dimensional facial image to a three-dimensional
morphable model; it can realize facial part ex-
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Figure 1: Facial part extraction using deep learn-
ing from two-dimensional facial image
of the human Haniwa.

traction rapidly in an actual environment. ESR
is identified by training a three-dimensional facial
expression dataset [6] which contains information
on 150 people with 47 different facial expressions,
captured using an RGBD camera. However, in
our study, the human Haniwa are too few to be
collected and processed by ESR.

Meanwhile, the introduction of deep learning
in 2012 impelled a rapid development in image
recognition technology. Lu et al. proposed an ac-
curate facial part extraction method using deep
learning for humans [7]. However, such a deep-
learning-based method for two-dimensional im-
age requires a large number of images for learn-
ing; hence, it is difficult to apply this method to
the human Haniwa without a sufficient number of
samples. Their extraction method can extract fa-
cial parts from the two-dimensional facial image
of the human Haniwa; however, the results are
substandard with duplicate or missed extractions
for facial parts, as shown in Figure 1. The ex-
tracted left eye, right eye, nose, and mouth should
be marked in green, red, yellow, and blue, respec-
tively. Unfortunately, the facial part extraction
using deep learning from two-dimensional facial
image of the human Haniwa did not perform well.

3 Our Method

Owing to the above-mentioned disadvantages, we
propose a novel evaluation method involving face
alignment and comparison for the Haniwa face.

For face alignment, a novel method is presented

for extracting their detailed three-dimensional in-
formation using traditional computer graphics
technology from the target point cloud. The
schematic diagram of this evaluation method is il-
lustrated in Figure 2. Based on a point cloud with
a triangular mesh of the Haniwa obtained using a
three-dimensional laser scanner, the face surface
was first estimated by fitting an ellipsoid after the
front head of the Haniwa was extracted. Subse-
quently, a method for segmenting the prominent
parts of the Haniwa using the fitted ellipsoid was
proposed to mark the nose points on the face, as
well as a three-dimensional hole detection method
to label the contours of its eyes and mouth.

As the point cloud of the nose contains more
points than those of the eyes and mouth, the
point clouds of the nose for each pair of Haniwa
were registered through the scaling iterative clos-
est point (sICP) algorithm [8] to achieve a scale
value for scale adjustment. After the point clouds
of all face parts for each pair of Haniwa were re-
sized on the same scale, their root mean squared
error (RMSE) was calculated using the standard
iterative closest point (ICP) algorithm [9,10] as a
dissimilarity for each pair of Haniwa. Moreover,
mean angle error (MAE) of the lines from the
nose centroid to the centroids of the other face
parts was originally measured as another metric
for facial part arrangement dissimilarity accord-
ing to habitual of humans for visual comparison.

The details are described in the following sec-
tions.

4 Face Alignment

4.1 Front Head Extraction

Six three-dimensional models of the Haniwa were
selected from the dataset [2]. Owing to the state
of excavation and preservation, one of them had
both a head and a body, whereas the others only
had a head. To perform face alignment stably,
each front head of these models was manually ex-
tracted and abstracted as a graph P := (V, E ,F).
Every P includes vertices (cloud points) v :=
[x y z]⊺ ∈ V, edges e := (va,vb) ∈ E and faces
f := (va,vb,vc) ∈ F . An example of the cor-
responding extracted results is shown in Figure
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The Haniwa 1 & 2 Front head

The point cloud of nose Face surface

The contours of eyes and mouth
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Front head extraction

Face surface estimation
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Nose segmentation
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1

Figure 2: Schematic diagram of face alignment and comparison for three-dimensional models of the
Haniwa.

3.

⇒

Figure 3: Front head extraction from three-
dimensional models of Haniwa. Left:
three-dimensional model of Haniwa;
right: extracted front head.

4.2 Face Surface Estimation

The three-dimensional models of the Haniwa en-
able their heads to be fitted and approximated
by ellipsoids. Since the curvature of the fitted el-
lipsoid is similar to that of the Haniwa face, the
ellipsoid can be considered as a reference surface
for determining the concave and convex portions
facial parts. If a point cloud lies outside of the
fitted ellipsoid, the facial part represented by this
point cloud is convex. Otherwise, the facial part
is concave. We suggest using the direct least-
squares fitting method [11,12] to locate the ellip-
soid as follows. An ellipsoid can be defined as

v⊺Av + b⊺v + c = 0, (1)

– 28 –



The Journal of the Society for Art and Science, Vol. 19, No. 3, pp. 25 – 39 (2020)

with a symmetric and positive matrix A, vector
b, and scalar c. A and b are defined as

A :=

 a1 a4 a5
a4 a2 a6
a5 a6 a3

 , b :=

 b1
b2
b3

 . (2)

Eqn. (1) can be written as a quadric equation as
follows:

a1x
2 + a2y

2 + a3z
2 + 2a4xy + 2a5xz + 2a6yz

+b1x+ b2y + b3z + c = 0, (3)

subject to the positive-definite constraints of A,
i.e.,

a24 < a1a2, a25 < a1a3, a26 < a2a3, (4)

which is referred from [13]. By rearranging the
variables x2, y2, z2, xy, xz, yz, x, y and z as a
variable vector x:

x := [x2 y2 z2 xy xz yz x y z 1]⊺, (5)

and the coefficient vector w:

w := [a1 a2 a3 2a4 2a5 2a6 b1 b2 b3 c]⊺, (6)

the ellipsoid can be written in a vector form,

f(w,x) := w⊺x = 0. (7)

Subsequently, ellipsoid fitting can be achieved by
minimizing the sum of the squared algebraic dis-
tances of the cloud points with respect to the ex-
pected coefficient vector as follows:

ŵ = argmin
w

N∑
i=1

f(w,xi)
2, (8)

where the variable vector of every cloud point xi

is defined by

xi := [x2i y2i z2i xiyi xizi yizi xi yi zi 1]
⊺, (9)

with equality constraints:

a1a2 − a24 = 1, a1a3 − a25 = 1, a2a3 − a26 = 1,
(10)

changed from Eqn. (4). Therefore, the ellipsoid-
fitting problem is reformulated as

min
w
∥Dw ∥2, subject to w⊺Cw = 1, (11)

where D is an N × 10 design matrix

D :=

 x21 y21 z21 x1y1 x1z1 y1z1
...

...
...

...
...

...
x2N y2N z2N xNyN xNzN yNzN

· · ·

· · ·
x1 y1 z1 1
...

...
...

...
xN yN zN 1

 , (12)

forN points in the cloud. C is a 10×10 constraint
matrix

C :=

[
C1 0[6×4]

0[4×6] 0[4×4]

]
,

C1 :=



0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 −2 0 0
0 0 0 0 −2 0
0 0 0 0 0 −2

 , (13)

representing the ellipsoid constraint as shown in
Eqn. (10). Applying the Lagrange multiplier λ
in Eqn. (11), we obtain the following Lagrange
function

L(w, λ) :=∥Dw ∥2 +λ(w⊺Cw − 1). (14)

Its optimal form for ∂L
∂w = 0 and ∂L

∂λ = 0 is written
as

Sw = λCw, subject to w⊺Cw = 1, (15)

where S is a 10× 10 scatter matrix, i.e.,

S := D⊺D. (16)

Ten real solutions (λk,wk), k ⩽ 10 can be calcu-
lated from

C−1Sw = λw (17)

through eigen-decomposition. Because

∥Dw ∥2 = w⊺D⊺Dw = w⊺Sw = λw⊺Cw = λ
(18)

the eigenvector wk corresponding to the minimal
positive eigenvalue λk must to be obtained to sat-
isfy Eqn. (11). Subsequently, the center of the
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fitted ellipsoid c with three axes u1,u2, and u3

should be calculated as unit eigenvectors y1, y2,
and y3 multiplied by the squared-root of the cor-
responding eigenvalues λ1, λ2, and λ3 as

ui =
√
λiyi, i = 1, 2, 3. (19)

Note that ∥u1∥ ⩾ ∥u2∥ ⩾ ∥u3∥ according to λ1 ⩾
λ2 ⩾ λ3. The fitting result is shown in Figure 4.

Figure 4: Face surface estimation by ellipsoid fit-
ting.

4.3 Contour Labelling of Eyes and Mouth

It is important to label the eyes, nose, and mouth
in facial features because they contain the most
visual information of the face. For an extracted
point cloud with the corresponding meshes of the
front head, it is clear that the eyes and mouth
comprise of topological holes of the technologi-
cal level at that time. Each topological hole can
be detected using Algorithm 1. Additionally, the
each edge has left and right faces if the mesh is
represented by oriented polygon model. In other
words, an edge has one face if the edge is bound-
ary of a hole. According to this principle, this al-
gorithm selects the edges that only appear once in
the face list, and then separates them into closed
rings based on their overlapping vertices1.

1Since the edges of the gaps and silhouettes of the faces
are not included in the boundary set B, they do not
affect the hole detection of the eyes and mouth.

Algorithm 1 Topological Holes Detection

1: List the edges from the faces F to build an
edge set Ẽ .

2: Select the edges without replicates from Ẽ to
build a boundary set B.

3: i← 1.
4: while B ̸= ∅ do
5: Select e1 := (va

1 ,v
b
1) from B

6: Define a topological hole H(i) :=
(V(i), E(i)), where V(i) ← {va

1 ,v
b
1} and

E(i) ← {e1}.
7: Initialize a trace T (i) := {v1,v2}, where

v1 ← va
1 and v2 ← vb

1.
8: k ← 2.
9: for j = 2 to the number of element of B

do
10: while v1 ̸= vk do
11: Select ej := (va

j ,v
b
j) from B.

12: if va
j = vk or vb

j = vk then
13: if va

j = vk then

14: vk+1 ← vb
j .

15: end if
16: if vb

j = vk then
17: vk+1 ← va

j .
18: end if
19: V(i) ← V(i) ∪ {vk+1}.
20: E(i) ← E(i) ∪ {ej}.
21: T (i) ← T (i) ∪ {vk+1}.
22: k ← k + 1.
23: end if
24: end while
25: end for
26: B ← B/E(i).
27: i← i+ 1.
28: end while
29: N ← i.
30: Output H(i) := (V(i), E(i)), i = 1, . . . , N .

After detecting all the topological holes on the
front head, we selected the three largest holes
with their vertices and edges as

H(t) := (V(t), E(t)), t = 1, 2, 3. (20)

and marked them in red, as shown in Figure 5.
Their perimeters L(t) and centroids c(t) were cal-
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culated as

L(t) :=
∑

e(t)∈E(t)

∥ e(t) ∥, c(t) :=
1

N (t)

∑
v(t)∈V(t)

v(t)

(21)

and constrained by L(1) ⩾ L(2) ⩾ L(3), where
N (t) is the number of v(t) in V(t).

Next, the three holes were assigned to their cor-
responding facial parts. Random indices t1, t2,
and t3 are selected from {1, 2, 3}, where t1 ̸= t2 ̸=
t3. By confirming whether the line (c(t1), c(t2,t3))
from c(t1) to the midpoint of every two centroids
c(t2,t3) := (c(t2) + c(t3))/2 is parallel with the ma-
jor axis e1 of the fitted ellipsoid by

t̂1, t̂2, t̂3 = argmin
t1,t2,t3∈{1,2,3},t1 ̸=t2 ̸=t3

θ(t1−t2,t3), (22)

the left and right eyes with the mouth can be
distinguished from each other, where

θ(t1−t2,t3) := ∠(l(t1−t2,t3),u1)

= arccos
l(t1−t2,t3)⊺u1

∥l(t1−t2,t3)∥∥u1∥
,

l(t1−t2,t3) := c(t2,t3) − c(t1). (23)

Therefore, topological holesH(t̂1), H(t̂2) andH(t̂3)

can be used to express Hle, Hre for the eyes and
Hm for the mouth, respectively, which are marked
in red in Figure 6. Moreover, the orbital thickness
of the Haniwa resulted in many scanning depth
errors. To suppress these errors, the point clouds
of the mouth and eyes must to be projected onto
the fitted ellipsoid, as shown in Figure 7.

4.4 Nose Segmentation

As illustrated in Figure 8, the convex parts in
the face are marked in orange, where the nose
expresses a convex part at the center of face;
hence, the concave-convex portion of the facial
parts based on the fitted ellipsoid can be applied
to quickly segment the nose from the front head.
However, in the actual discrimination, other con-
vex parts (noise) exist that interfered with the
nose segmentation. Therefore, some constraints
must be added for noise suppression. Here, the
most obvious constraint is that the nose is lo-
cated within the triangle of the centroids of the

Figure 5: Contour labelling of the three largest
topological holes.

Figure 6: Confirmation of left and right eyes with
mouth.

eyes and mouth considered as the vertices. This
constraint can be achieved by calculating the an-
gular distances as follows.

For any cloud point v∃ on the outside of the
fitted ellipsoid, the vectors from it to the ellipsoid
center c, centroid of left eye cle, centroid of right
eye cre, and centroid of mouth cm are defined by

l∃ := v∃ − c, lle := cle − c,

lm := cm − c, lre := cre − c. (24)

By calculating the angular distances of these vec-
tors, i.e.,

θ(le,m) := ∠(lle, lm), θ(re,m) := ∠(lre, lm),

θ(∃,le) := ∠(l∃, l1e), θ(∃,re) := ∠(l∃, lre),
θ(∃,m) := ∠(l∃, lm), (25)

the expected constraint can be obtained as fol-
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Figure 7: Point-cloud projection of eyes and
mouth on face surface.

lows:

θ(∃,le) ⩽ θ(le,m), θ(∃,re) ⩽ θ(re,m),

θ(∃,m) ⩽ min(θ(le,m), θ(re,m)), (26)

which enable us to locate and segment the nose
by extracting its cloud points.

Figure 8: Nose segmentation by angle con-
straints.

5 Face Comparison

The ICP algorithm [9, 10] is employed to mini-
mize the difference between two point clouds on
the same scale, but it does not register two point
clouds with different scales. Du et al. [8] intro-
duced a novel approach known as the sICP al-
gorithm, which integrates a scale matrix into the
original ICP algorithm for scaling registration.

The point clouds of the Haniwa faces must be
adjusted on the same scale before comparing the
dissimilarity; this is because creating the Haniwa
faces on the same scale is challenging even when
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Figure 9: Point clouds of nose for reference and
source before sICP.
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Figure 10: Point clouds of nose for reference and
source after sICP.

the same maker is used when handmaking them.
Meanwhile, the point cloud of the nose contains
more points than those of the other parts. These
points are not modified and are uniformly dis-
tributed even in depth; hence, they include three-
dimensional information with higher aboriginal-
ity and precision2. Therefore, as shown in Figures
9 and 10, the sICP algorithm was first used for
the point clouds of the nose to obtain their scale
value. Subsequently, based on the scale value,
two point clouds of all parts were adjusted on the
same scale, as shown in Figure 11. Finally, the
two scaled point clouds of all parts were regis-

2If the point clouds of all face parts such as those in [14]
are used in sICP to obtain the scale, more errors will
be generated in the following ICP compared with the
scaling method based on only the nose.
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Figure 12: Point clouds of all parts for reference
and source after ICP.

tered by the ICP algorithm, as shown in Figure
12.

Here, two metrics of face dissimilarity are pro-
posed for the face comparison. Naturally, the
RMSE of the ICP algorithm can be considered
as one metric of face dissimilarity, although it is
usually used for error evaluation. Moreover, the
spatial relationship of all parts is also important
to be compared, and thus the MAE of lines from
nose centroid to the centroids of other face parts
is regarded as another metric for facial parts ar-
rangement dissimilarity. Here these lines are in-
dicated in Figures 11 and 12.

6 Experiments

The proposed method was used to perform the
face alignment and comparison for the six Haniwa
models that were selected from the dataset [2] in

Figure 13.

Figures 14 and 15 show the experimental re-
sults of face alignment from two different view-
points, separately. In these figures, the edges of
the eyes and mouth are indicated in red, and the
cloud points of nose are marked in orange. All of
them indicate whether headwear exists for Mod-
els 1, 3, and 4, and whether the hair existed on
the head top of Models 5 and 6. Our proposed
face alignment was executed precisely without in-
terference at all times. Therefore, high precision
with good anti-interference ability can be consid-
ered as characteristic of our proposed method.

Table 1 shows the RMSE of the point clouds
of all face parts and the MAE of lines from the
nose centroid to the centroids of other face parts
between every two models in Models 1–6 after
the ICP. Figure 16 shows the registration results
between Model 1 and the other models to express
the face similarities measured based on the RMSE
and MAE in three viewpoints.

It is obvious that Models 1 and 4 are more sim-
ilar than others according to the first lowest MAE
(0.0537 rad) and second lowest RMSE (1.7464),
because their corresponding face parts basically
coincide with each other. Meanwhile, the MAE
of Models 1 and 3 (0.0947 rad) and that of Models
3 and 4 (0.0940 rad) are definitely close to that of
Models 1 and 4. It denotes that there might exist
a making rule to locate nose, mouth, and eyes in
the Wazumi technique.

Because Models 2 and 5 have a low RMSE
(1.5462), they can be considered as similar ob-
jects. In fact, Models 2 and 5 can be classified
together with Models 1, 3, and 4 from the hu-
man perspective. However, Model 2 exhibited
a larger nose, whereas Model 5 exhibited a bro-
ken one; therefore, the RMSE and MAE between
them compared with those of other models were
significant. In addition, Model 6 exhibited the
largest nose with the highest bridge; therefore,
its RMSE and MAE compared with those of the
other models remained high.

Our proposed method was implemented in
MATLAB using an Intel Core i3-4350 CPU and
8 GB RAM. The total processing time of the face
alignment was approximately 1.1108 seconds on
an organized cloud with 20,000 points with the
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Model 1 Model 2
Model 3

Model 4 Model 5 Model 6

Figure 13: Three-dimensional models of the Haniwa.

Model 1 Model 2 Model 3

Model 4 Model 5 Model 6

Figure 14: Face alignment results from first viewpoint.
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Model 1 Model 2 Model 3

Model 4 Model 5 Model 6

Figure 15: Face alignment results from second viewpoint.

Table 1: Root mean squared error (RMSE) of point clouds of all face parts, and mean angle error
(MAE) of lines from nose centroid to centroids of other face parts between every two models
in Models 1-6 after ICP. Lower-left: MAE in rad; upper-right: RMSE in millimeters.

RMSE and MAE

MAE

RMSE
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Model 1 2.2535 2.0908 1.7464 2.2398 3.0326

Model 2 0.1538 2.1311 2.6485 1.5462 2.8546

Model 3 0.0947 0.1280 2.0588 2.5971 2.3985

Model 4 0.0537 0.1295 0.0940 2.4905 3.1309

Model 5 0.1503 0.1260 0.0965 0.1278 2.7455

Model 6 0.1267 0.1346 0.1223 0.0829 0.1109

corresponding meshes. The processing time for
the face surface estimation, contour labeling of
the eyes and mouth, and nose segmentation were
0.7185, 0.3510, and 0.0413 seconds, respectively.
Moreover, the total processing time taken to com-
pare the two faces was approximately 0.1338 sec-

onds. The processing times of the sICP and ICP,
and the computation of the MAE were 0.1007,
0.0132, and 0.0199 seconds, respectively.
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7 Conclusion

A hybrid method combining ellipsoid-fitting-
based segmentation and topological hole detec-
tion, has been proposed to perform the three-
dimensional face alignment of the Haniwa with
high precision. Furthermore, the similarity be-
tween Haniwa faces was evaluated digitally for
the first time in this study based on the point-
cloud-based metrics. Our experimental results
proved the archaeological assumption that the
maker located the nose, mouth, and eyes of the
Haniwa at fixed angles. Archaeologists have con-
firmed the proposed method is valuable based
on the experimental results. In our future stud-
ies, we will perform face alignment and compari-
son using more Haniwa figurines, including other
types, e.g., those wearing a helmet or with a verti-
cally long nose. Based on the comparison results,
we will analyze their artistic values and prove-
nances with datings.
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Figure 16: Results of ICP among different models from three viewpoints.
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