
芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

Low-Memory and Interactive-Rate Animation of
Water-Column Based Flows

 Marcelo M. MAES† Tadahiro FUJIMOTO‡ Norishige CHIBA‡

Department of Computer Science, Faculty of Engineering, Iwate University, Japan
E-mail: † marcelo@cg.cis.iwate-u.ac.jp, ‡ {fujimoto | nchiba}@cis.iwate-u.ac.jp

Abstract

We present an optimization of the height-field water-column based approach for water simulation,
providing three-dimensional animation of water flow on natural terrains. Our approach eliminates the
storage and management of redundant virtual pipes between columns of water and also removes output
dependency for parallel implementation, making it efficient for interactive computer graphics applications.
We show a GPU implementation of the proposed method that runs at interactive frame rates with rich
lighting effects on the water surface, including light wavelength dependent attenuation and light scattering.

Keywords: Natural Phenomena, Physically-Based Animation, Water Simulation, Height-Field, Light
Transport.

Figure 1. Water flowing on irregular terrain.

1. Introduction

Water representation and animation have been
intensively investigated in computer graphics due
to the complexity of its behavior and visualization.
Although recent research focuses on efficient
methods to solve the computational expensive
water simulation, these methods still require
minutes of calculation time for every animation
frame. Interactive applications such as landscape
design, virtual reality, and games, which often need
three-dimensional water animation at interactive
frame rates, either lack realistic solutions or they
have to rely on a two-dimensional plane-based
simplification of the water surface.

Due to the complexity of the water behavior, there
is no single method that can capture all the subtle
effects of the water [10]. Therefore several methods

must be combined to produce realistic animations.
Preferably, these methods should be based on
physics to behave as its physical counterpart and to
interact with each other. However, computer
graphics applications don’t need the same degree of
accuracy as engineering applications, so they
usually sacrifice accuracy for efficiency.

Water flowing on terrains generates several natural
phenomena, including rivers, waterfalls, puddles,
and lakes; see Figures 1 and 10. This flow is mainly
dominated by gravity and the water is near vertical
equilibrium against the ground [11]. Since terrains
are highly irregular, water does not lie
homogeneously over the terrain. This requires an
efficient simulation method with good spatial
handling, but without loss of visual details. It is
also desirable the visualization to be reasonably
simple, making the method suitable for computer

1

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

graphics animation and interactive applications.

We present an optimization of the height-field
water-column based approach for water simulation
previously introduced by [23, 20, 9], and a further
extension of [17]. The general idea of these
methods is to calculate the hydrostatic pressure in
columns of water and the flow due to pressure
difference through virtual pipes between adjacent
columns. The water columns have variable height
and lie directly on the terrain, therefore the flow
calculations are spatially performed only where
necessary. The method is composed of three
interacting systems: a water volume model; a
particle model for splashes and bubbles; and an
external object interaction model. We show in this
work an optimization of the water volume model,
which has several advantages that our approach
benefits as well:
 Hydrostatic physics calculation has low
computational cost;
 The model intrinsically generates water surface
phenomena, such as the propagation of waves;
 All variables are physically based, allowing other
physical systems to interact with the water
volume model;
 The three-dimensional simulation has squared
computational cost, proportional to the two-
dimensional resolution of the height-field;
 The top of all columns are known resulting in a
straightforward water surface geometry extraction
as a height-field;
 Low computational cost of optical effects on the
water surface inherited from other two-
dimensional methods.

There are some limitations as a general solution for
fluid simulation:
 The model suffers from vertical isotropy due the
column representation;
 Breaking waves and free parts, such as splashes,
foam, and bubbles can not be directly represented,
requiring a coupled particle system;
 Calculation time step must be small otherwise the
system becomes unstable and oscillates, which
vexes most time-forward integration methods.

Our contributions to the optimization of the water-
column volume model are:
 Low memory footprint by reducing the number of
redundant virtual pipes between columns of water,
without affecting the results of the physical
simulation;
 Parallel promotion of the algorithm by removing
output dependency on the shared data;

 Implementation of both the simulation and
rendering processes on commodity graphics
hardware, thus reducing data transfer for
rendering every frame;
 A single height-field to represent both terrain and
water surface, reducing the geometry rendered per
frame;
 Accurate rendering of refraction, light attenuation
and scattering, taking into account the water
depth.

We describe the related work in fluid simulation for
computer graphics in Section 2. We show our
contribution to the water model and its
parallelization in Section 3. We present the
rendering process along with the light model for the
water in Section 4. In Section 5, we present the
results by showing several experiments. We
conclude this work in Section 6.

2. Related Work

To solve the Navier-Stokes equations (NSE) for
fluid dynamics, computational models require a lot
of computer resources in terms of memory storage
and calculation time [10]. Numerical solutions of
the NSE [1] can be categorized in Eulerian (grid-
based) and Lagrangian (particle-based) approaches.
The first subdivides the space in a regular grid and
observes the fluid that passes through it. The
second tracks disjoint elements of fluid through
time.

One of the first attempts to carry out a full three-
dimensional NSE-based simulation in computer
graphics was the work of Foster and Metaxas [6].
They subdivided the three-dimensional space in a
regular grid, and solved the Navier-Stokes
equations by discretizing the pressure and velocities
respectively at the grid’s center and faces. They
used marker particles to track the fluid surface, and
alternatively a height-field for liquids.

The most important contribution for stability is the
work of Stam [30]. The method is made
unconditionally stable by applying a semi-
Lagrangian method for the advection term of the
NSE. A two-dimensional implementation on the
GPU was presented by [8, 36] and a three-
dimensional by [15]. Although these simulations
run in real-time, they do not address the problem of
simulating fluids with free boundaries, such as
water.

2

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

(a) (b) (c)
Figure 2. Water flow simulation on terrain using different methods:

(a) regular grid; (b) particles; (c) columns of water.

 Figure 3. Water-column model with two cells per
column (ncell = 2). Virtual pipes created between

overlapping cells and unobstructed vicinity.
The free boundary issue is addressed with a hybrid
particle and level set method [5, 4, 16, 11]. An
implicit function evolves together with the fluid
simulation to track the isocontour representing the
interface of the liquid. Particles are used near the
interface in the coarse grid of the simulation to
accurately adjust the surface of the liquid.

Eulerian approaches are not spatially efficient in
simulating water flow on terrains. Since terrains
may be highly irregular, the grid structure may
waste storage space that never contains liquid; see
Figure 2 (a).

Losasso et al. [16] proposed the use of adaptive
meshes to alleviate the resolution problem of grid-
based methods. They add finer resolution where
visual details are necessary. They apply an
unrestricted octree structure to increase resolution,
and present a new method of discretizing pressure
and velocity. Their method reduces the simulation
time for fluid simulation with fine detail, without
increasing accuracy error.

Irving et al. [11] proposed a hybrid method of two-
dimensional grid composed of tall cells with linear
pressure profile, and a three-dimensional grid near
the interface of the fluid. They use a NSE-based
solver over both structures by interpolating tall
cells values accordingly. They apply the
particle/level set method to track the surface of the
fluid only in the three-dimensional region. They
state this combination has performance gains for
flows heavily dominated by gravity, like in shallow
water regime. Like other NSE-based solvers, the
calculation time is still in the order of minutes per
frame.

Particle-based methods represent water throughout
the terrain only where needed. Even having a better
spatial distribution, these methods usually require
smaller time steps to avoid particles bursting away
due to attraction and repulsion forces.

Chiba et al. [2] proposed a quasi-physical method

in which particle interactions occur within a voxel
space to reduce interactions with distant particles
and to perform collisions against obstacles. To
reconstruct the water surface, they use an implicit
function influenced by the particles. They point out
that the number of particles must be high to avoid
surface artifacts.

Müller et al. [21] used Smoothed Particles
Hydrodynamics (SPH) to simulate fluids by
interpolating physical quantities, such as viscosity
and pressure, defined at discrete particles. They use
point splatting and marching cubes to render the
surface of liquids. They state that tracking and
rendering the fluid surface for interactive
applications remain a challenge.

Kipfer and Westermann [14] presented a GPU
accelerated particle simulation using the SPH
method. They use three sorted linear lists to lookup
for particle collisions and a height-field over the
particles to represent the surface of the water.
Although this surface representation does not
require a dense particle set, it is not volume
conserving. Surface details, such as waves, depend
directly on the height-field resolution, which was
apparently coarse in their examples to keep
interactive frame rates.

Premože et al. [25] used the Moving-Particle Semi-
Implicit (MPS) method to simulate fluids with a
level set method to reconstruct the surface. They
ran a low-resolution simulation for instant feedback,
and then increased the number of particles for the
final simulation. Since the MPS method is fully
Lagrangian, the fluid particles are present only
where they are needed. However, even a simple
polygonal scene must be converted into the particle
representation.
Lagrangian approaches usually require a
considerable amount of particles to represent the
details of the fluid surface, thus increasing storage

3

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

space and computation time. Additional particles
do not contribute only to the surface representation,
they also increase the overall number of particles in
the simulation; see Figure 2 (b). The surface
reconstruction is also complex because of
continuous topology change.

To alleviate the complexity of a three-dimensional
simulation of water flow on terrains, some works
[22, 33, 34, 26] focus only on what is seen in
brooks and rivers, i.e., waves and ripples on the
water surface near the vicinity of obstacles and
banks. The water surface is assumed to be two-
dimensional and discretized in a regular grid to run
the fluid simulation. Based on the resulting velocity
field, ripples and shock waves are extracted; then
bump maps are placed and animated on the surface.

Although these methods include realistic surface
phenomena not present in low-resolution three-
dimensional simulations, they cannot accurately
represent water flowing on irregular terrains and
other three-dimensional effects, such as splashes
and falls without the information about the water
volume.

3. Proposed Efficient Method

Kass and Miller [13] first proposed to perform
water simulation with the assumptions of the water
surface being a height-field and the horizontal
velocity constant through a vertical column of
water. Their model uses a simplified subset of the
fluid dynamics in two-dimensions. However they
do not model the interaction of external objects and
free parts such as splashes.

Our physical model is based on the work
introduced by O’Brien and Hodgins [23]. The
model is composed of a volume of water which is
divided into vertical columns in a rectilinear grid.
Each of these columns is connected to its neighbors
by virtual pipes. The flow in the pipes is derived
from the physical laws of hydrostatic pressure. The
model also supports external forces on the surface

that are applied as external pressure. Spray particles
are created when the upward velocity of a portion
of the surface exceeds a certain height threshold.

Mould and Yang [20] extended this model further
by running the simulation on an arbitrary height-
field and by reducing the vertical isotropy by the
subdivision of each column into multiple cells; see
Figure 3. However, external forces on the water
surface are unconditionally applied in the vertical
direction. Certain phenomena also cannot be
represented with this model such as vortices. They
also extended the particle model by including
bubbles rising inside the water.

Later, Holmberg and Wunsche [9] applied this
model to simulate the natural movement of rivers,
rapids and waterfalls. They use ray-tracing to
render the results, which is intended to be a non-
interactive simulation and animation tool.

This model has the same advantage of Lagrangian
models: since each column lies directly on the
terrain, the calculation is spatially performed only
where needed; see Figure 2 (c). The height of the
columns is variable, and the surface sampling is
directly related to the discretization of the
rectilinear grid over the height-field. Therefore, the
water surface can also be represented as a height-
field over the terrain.

3.1 Water Volume Model

Here we review the model used in the simulation of
the main water volume and the related equations,
according to [23, 20, 9].

All vertical columns start with a pre-defined height
that can be input by the user, and which varies over
time during the simulation. Source and sink
columns retain their height to allow in- and out-
flows to the system. The number of cells per
column, ncell in Figure 3, can be fixed or input by
the user depending on the implementation.

4

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

Virtual pipes are created horizontally between
adjacent columns where their cells overlap; see
Figure 3. No pipe is created vertically between
stacked cells in the same column. Their height
varies due to the flow of water through pipes
between neighboring columns.

The flow in these virtual pipes is determined by the
physics of hydrostatics. The pressure at one point
of the column is given by:
 eppghp ++= 0ρ (1)
where h is the height of water above the calculated
point; ρ is the density of the fluid; g is the gravity
acceleration; p0 is the atmospheric pressure; and pe
is the pressure due to external forces.

The flow velocity due to the pressure difference
between two points in adjacent columns is given
by:

 ()
l

pptf tailhead
ρ

ηη −
Δ+= 0 (2)

b
h

(a)

(b)

neighbor1 neighbor2

Vweir1 Vweir2

Figure 4. (a) Flow through a weir (b) applied to
the discretized water-column model.

where f is a non-physical frictional coefficient, as
suggested in [20] to produce a gradual loss of
energy; η0 is the flow velocity in the previous time
step; Δt is the simulation time step; and l is the
length of the pipe.

Given the flow velocity in the pipe, the volume of
water that should be moved through it is:
 ctV pipe ηΔ= (3)
where c is the cross sectional area of the pipe, i.e.
the amount of overlap between adjacent cells. The
volume transferred is translated into height changes
between the cells. Since mass must be conserved,
all pipes that are removing fluid from a cell are
scaled back if the volume of that cell becomes
negative. When the height of a cell reaches a
threshold, the cell is considered dry and does not
transfer fluid out to its neighbors.

Since the flow velocity depends on the previous
time step, it must be stored in memory for each
virtual pipe. As the height of the columns changes
throughout the simulation, virtual pipes must be
created and deleted as the overlap between adjacent
cells changes.

To model water that breaks free from the main
volume of water, such as splashes and waterfalls,
Holmberg and Wunsche [9] calculates the volume
of water that flows through a weir; see Figure 4 (a).
In their work, this model is used when the height of
a wave crest becomes unstable. The flow rate
through a weir is given by:

 gbh 2
3
2 2

3

=ζ (4)

where b is the width of the column; and h the
height of the unobstructed water. The volume of
water transferred is:
 ζtVweir Δ= (5)

The assumption of flow through a weir is a good
approximation since the flow direction is
discretized to one of the neighbors, and the flow
will occur only in the unobstructed direction; see
arrows in Figure 4 (b).

3.2 Reduction of Memory Requirements

We assume the initial condition of the simulation is
static, i.e. flow velocities are zero. We then note
that the pressure difference between any two
leveled submerged points is the same for adjacent
columns; for example (p1−p’1) = (p2−p’2) = (p3−p’3)
in Figure 5 (a). The resulting flow in each pipe,
Equation 2, will be the same (η1 = η2 = η3).

To reduce the memory storage, we calculate and
store the flow η of just one pair of those points, e.g.
pair with pressure difference (p−p’) in Figure 5 (b).
Consequently, to calculate the transferred volume
of water, we must check if two cells overlap for
every simulation step. This process does not

5

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

increase the overall complexity since the same
process must be performed in the original algorithm
to check whether a pipe should be created or
deleted. Thus we reduce the maximum memory
requirements per adjacent columns from 2×ncell to
only 2, i.e. one pipe between adjacent columns and
one pipe connected to the air, independent of the
number of stacked cells, see Figure 5 (b).

We also note that the flow through a weir, Equation
4, does not depend on the flow rate from the
previous time step, and we adopt this model for all
flow between a column of water and the adjacent
air above a lower column, see Figure 7. Besides
reducing the maximum number of stored virtual
pipes between adjacent columns to only 1, we also
have a single model for unobstructed water flow.
The simulation results show no change in the
behavior of the water surface, such as the wave
propagation phenomenon; see Figure 10 (a).

On a two-dimensional rectilinear grid, each column
has 8 neighbors. To avoid duplicated virtual pipes,
we store only 4 unique virtual pipes per column, as
shown in figure 6 (b). Storing only 1 flow velocity
per neighboring column not only reduces the
memory footprint, but also reduces the amount of
memory access and calculation time. For example,
given a height-field with resolution of 256×256,
and flow velocity stored as 32-bit floating point
values as shown in Figure 6 (b), a total memory of
256×256×(2×ncell)×(4 floats×4 bytes/float) = 4MB
would be necessary for ncell = 2. This value drops to

1MB (
celln×2

1 = 25%) with our optimization.

Although such amount of memory may be low for
recent hardware, the memory access and the
calculation to update the flow values are
256×256×(2×ncell) = 262144 times for ncell = 2, or
65536 times (25%) with our optimization. These

values become much more significant for height-
fields with higher resolutions.

p1

p0+pe

p0+p’e

p2

p3

p’1

p’2

p’3

(b) (a)
Figure 5. (a) Flow occurs due pressure difference

between adjacent columns. (b) Flow storage
reduction.

p p’ηη ηη11

ηη22

ηη33

3.3 Simulation Parallelization

Recently commodity graphics hardware has
become inexpensive, programmable, and has been
used as a general purpose processing unit [7]. The
GPU (Graphics Processing Unit) is capable of
running vertex and fragment programs in parallel
on stream processors.

The first generations of programmable graphics
hardware can only perform gather memory
operations, where any stream processor can access
the input shared data (texture access), but the
output can only be written in a single memory
position, i.e. the rendered fragment.

Therefore, to promote parallelization of the water
simulation, we have to produce an independent
output. We do that by adding all water inflow from
neighboring columns, and subtracting the all
outflow from the column being processed.

For every column, we calculate all volume out-
flowing the cells; Equations 3 and 5. If the volume
is larger than the column volume, we apply the
following scale factor to the outflow:

∑ +

=
out

i
weirpipe

column

ii
VV

V
factor scale (6)

where Vcolumn is the column volume; out is the total
of neighbors with outflow through a pipe or a weir;
Vpipe and Vweir are the respective volumes out-
flowing from the column to the neighbor i.

We can either calculate all neighbors’ outflow
when processing a single column, or have an extra
rendering pass to store in memory the outflow
scaling. We choose the latter since it performs
about 5 times faster by avoiding the same
calculation of the same neighbors several times.

We store the simulation data structures in two-
dimensional textures: one for the flow velocity and
one for the column height, as shown in Figure 6.
Fragment shaders are then used to update the stored
values using one-to-one pixel-to-texel mapping [7].

The input terrain is given by a height-field in a gray
scale image and its height is scaled and stored in a
floating-point texture. The sampling for the
columns of water is created with the same
resolution as the terrain height-field. To reduce the

6

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

access to texture memory, we pack the terrain and
the water columns in a single RGBA texture, where
the red component has the terrain height, and the
other components can store cells of a single
column; see Figure 6 (a). We use the alpha channel
of the height texture to store the outflow scaling
factor obtained in Equation 6.

A single texel can store up to 2 cells per column
(ncell = 2), as shown in Figure 6 (a), resulting in
minimum texture access during the simulation and
rendering stages. More cells (ncell > 2) can be stored
in additional textures, which will hit the overall
performance due to the extra memory access and
cell overlap calculations.

We only need to store one flow velocity value per
one pair of adjacent columns, rather than allocating
and maintaining all virtual pipes between the fluid
cells. See Figure 6 (b) for the texture arrangement
of pipes and flow direction between 8-neighboring
columns.

We summarize the simulation process, together
with other auxiliary textures, with the following
rendering passes:
I) Update the flow velocities (Equation 2):
 read a texture with external pressure values
derived from forces of interacting external
objects;

 read the texture with the column heights and
calculate the pressure difference (Equation 1).

II) Calculate the outflow scaling (Equation 6):
 read the updated flow and the column heights to
calculate the total volume leaving each column;

 write the scaling value to the alpha channel of the
column height texture (Figure 6 (a)).

III) Update the water-column volume:
 read the flow value between columns and
calculate the overlapping area between adjacent

cells (Equation 3);
 calculate the volume of transferred to the air
above a lower column (Equations 4 and 5),
including free parts disconnecting from the
water-column;

 sum all inflow volumes and subtract the outflow;
 write the free volume in another texture with the
averaged velocity of flows between neighbors.

3.4 Particle System

We implement a simple particle system to illustrate
the interaction of free parts of fluid, such as
splashes and falls, with the proposed optimized
water volume model. We do not consider inter-
particles interaction [9], only the influence of
gravity.

One of the most useful definitions of breaking
waves is that breaking occurs when the wave slope
exceeds a critical angle θ [28]. We let the user
specify the slope threshold to control the particle
creation and in consequence, the memory space
needed to store the particles.

Only the partial volume that exceeds the slope
threshold is used to generate particles, see Figure 7.
The rest of the volume, i.e. bellow the threshold, is
simply transferred to the lower neighbor column.

When a particle collides with the main body of
water, it generates pressure on the surface, derived
from a friction force and a buoyant force [20]. The
volume of collided particle is then absorbed back in
the main water volume.

Other two textures keep the position and the
velocity of every generated particle. We use the
alpha channel of these textures to store respectively
the external pressure after collision, and the particle
volume. The resolution of these two textures will
limit the number of active particles in the system.

The velocity and positions are updated as the
rendering passes summarized bellow:
I) Update the particle position
 read the previous particle position and update it

terrain
height

water cells
height

R

G

B

column height flow velocity

A

G B

A
outflow
scale facto

Figure 7. Slope threshold for breaking waves.

θ

flow through
a weir r

R

(a) (b)
Figure 6. Simulation data textures: (a) terrain

height packed with two water cells per column in
one texel; (b) flow through pipes between adjacent

columns and the flow direction.

7

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

according to its velocity.
II) Update the particle velocity
 read the position and the column heights to check
the collision of the particle;

 if they collide, calculate the external forces and
the resulting vertical external pressure, otherwise
update the velocity according to the gravity
acceleration.

III) Create new particles
 read the free volume texture from the GPU to the
CPU and calculate the number of particles to
create according to a user-defined unit volume in
case one particle represents several droplets of
water;

 read the position texture and search for empty
slots (empty volume) to create the new particle;

 render each new particle as a point in the particle
position and velocity textures

IV) Apply collisions as external pressure
 render each particle as a point in the external
pressure texture;

 if the particle has collision information
(calculated in pass II) write the external pressure
value and the volume to merge with the water-
column volume.

The particle creation requires the transfer of data
from the GPU memory to the CPU memory, which
drastically slows down the overall performance of
the system. Therefore we combine a number of
water-column simulation steps followed by one
particle simulation step. This not only reduces the
time consuming data transfer operation per water-
column simulation step, but also provides smooth
particle volume absorption after collision.

4. Rendering

We render the terrain and the water surface as a
single height-field since they have the same
resolution and their heights are packed together in a
single texture. We then interpolate from one
material to the other with a fragment shader in the
GPU. This reduces the geometry and the number of
texture access.
We use a vertex shader to displace the height of a
planar grid mesh, which can reside in the GPU
memory for maximum performance. Therefore,
there is minimum data transfer to the GPU for
rendering.

We render the particles as textured point sprites,
with size proportional to the volume and inversely

proportional to the distance from the viewer; see
Figure 1. Then we blend them with the current
rendered frame. At this time, no sorting and
complex shading are done when rendering the
particles.

4.1 Light Transport

For each fragment rendered, we calculate the light
transport on the surface of the main volume of
water. All access to the column’s float-point texture
is performed with bilinear interpolation of its
heights to avoid visual artifacts due to
discretization of the height-field.

We calculate light reflection R and refraction T on
the water surface based on the eye direction E and
the surface normal N; refer to Figure 8. We use
Snell’s law for the refraction of light from the air to
the water, with refractive indices of 1 and 1.33
respectively.

The Fresnel factor defines the ratio of reflection
and refraction of non-polarized light on a dielectric
material. We use the Schlick’s approximation [27]
for the Fresnel reflectivity given by:
 ()()50.11 EN ⋅−−+= λλ ffR (7)
where fλ is the spectral distribution of the Fresnel
factor at normal incidence. The spectral distribution
fλ depends on the wavelength of the light λ, but we
use a single value for all spectrum. This value is
≈0.02 for water [29]. The transmission coefficient T
is the complement of the reflectivity for energy
conservation, given by:
 RT −=1 (8)

The intensity of light arriving in the eye direction E
is then given by:
 TRE TIRII += (9)
where IR is the intensity of light coming from the
reflected ray R, which is mapped to a cubemap,
assuming that the environment is far away from the
surface. IT is the light coming from the refracted ray,
calculated as follows.

We accurately compute the intersection of the
refracted ray and the terrain ground through a linear
search with fixed increments δ, followed by a
binary search [24] with increments of ±δ/2level,
where level is the step number of the binary search.
Refer to Figure 8 for a schematic diagram of the
process.

8

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

The attenuation of light in transparent volumes
does not only decrease the color intensity, but also
deepens the color saturation and changes the hue
[31]. The internal transmittance for liquid solutions
is given by the Beer’s law:
 () ()clalT λλ −=10,internal (10)
where λ is the light wavelength; a(λ) is the
absorption spectrum of the material; c is the
solution concentration; and l is the length of the
light path. We sample the absorption spectrum of
pure water for the RGB wavelengths, with
coefficients (0.648, 0.053, 0.036) m−1 respectively
[35]. This approximation may introduce significant
errors due to spectrum undersampling [31];
however it results in a plausible water appearance.

We assume that the highest contribution of light
under the water comes from the vertical direction
above. The lighting in the ground is then calculated
from the intensity of light coming from the vertical
refracted ray Tg, shown in Figure 8. The Fresnel
term is also applied to modulate the intensity
transmitted to the water. The diffuse lighting at the
ground is given by the dot product Ng·(−Tg), and
the intensity is attenuated by the height h.

We also assume the water has impurities that not
only further attenuates the light, but also
contributes with scattered light. For the attenuation,
we use a simple exponential decay, given by:
 (11) () klelA −=

where k is the attenuation coefficient, and l is the
length of the light path.

We use a single scattering method [3, 18] at each
linear search interval δ. This approach has low
computational cost since it shares the height data
already available from each step of the depth search
process. However, if the interval δ is too large, the
scattering calculation may introduce visual artifacts
to the water appearance.

The vertical incoming light is modulated by T·Ti.
The light intensity arriving at the refracted ray in
the direction T is the ground lighting plus the
scattered light due to impurities, given by:

()() () ()
() () ()δδδλ

λ

 ,

,

internal
1

gginternal

×+×+⋅+

++−⋅=

∑
=

ihAihTTI

depthhAdepthhTTII

iii

n

i
ii

TT

TN

LL

ggTLT gg

(12)

where IT, ILg, ILi are respectively the light
intensities at the surface of the refracted ray from
the viewer direction, the light coming from the Lg
and Li directions. TTg and TLi are respectively the
Fresnel transmission factors (Equation 8) for the
vectors Tg and Li (refer to Figure 8). n is the
number of steps in the linear search inside the water
and above the ground level; hi is the height from
the step position to the water surface; and depth is
the length resulting from the ground’s depth search.

5. Results

All the experiments shown here ran on an Intel
Pentium 4 processor at 3.4GHz with 1GB of
memory, and an NVIDIA GeForce 6600GT
graphics card with 128MB of memory. OpenGL
and OpenGL Shading Language were used for all
GPU operations.

We first ran a simulation with different column
subdivisions of one, two and three cells per column.
The performance drop for two and three cells per
column was respectively around 60% and 80%. The
number of cells per column must be carefully
chosen since it has a significant impact in the
simulation performance. More cells per column
must be used when the application requires more
samples of the vertical velocity. Otherwise one cell
per column is sufficient for the appearance and
animation effects shown in Figures 1, 9, and 10.

We implemented only one cell per column for
efficiency and aiming only for the water surface
appearance. See Figure 10 for some frames of the
animation. Table 1 shows the performance results
for different terrains running at simulation time
steps of 0.005s and with the particle system

E N
R

T

environment
cubemap

Figure 8. Light transport: reflection, refraction,
attenuation, and single scattering.

Lg

δ Tg

Ng

δ/2

δ/4
δ/8

δ

L4
L3

L2
L1

T4
T3

T2

T1

hg

depth

9

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

Table 1. Computational time of simulation for
different height-field resolutions.

Resolution
(pixels)

Simulation
on the CPU

Simulation
on the GPU Speed-up

Table 2. Computational time of simulation and
rendering for 1 animation frame.

Resolution
(pixels)

10 steps
of water

simulation

1 step of
particle

simulation

Per-
fragment

water
rendering

Point sprite
particle

rendering*
* 64×64 158 ms 2 ms

(500 fps) 79×

64×64 11 ms 50 ms
*(2106) 129 ms 269 ms 128×128 665 ms 4 ms

(250 fps) 166×

128×128 31 ms 142 ms
*(5800) 229 ms 697 ms 256×256 2705 ms 13 ms

(76 fps) 208×

256×256 122 ms 141 ms
*(7491) 677 ms 478 ms 512×512 11055 ms 48 ms

(20 fps) 230×

512×512 471 ms 342 ms
*(12791) 3265 ms 1155 ms

*(average number of particles generated)
**with motion blur

disabled.

For the simulation to match a real-time animation,
it would be required to run at 200 frames per
second (1/0.005s). That is true for smaller height-
fields up to 128×128 pixels running on the GPU.
For larger height-fields, the animation runs slower
than the corresponding simulation time step.
Nevertheless, the simulation presents a two order
speed increase and its behavior can be observed at
interactive frame rates.

We set up the next experiment with a single height-
field but with different resolutions to compare the
interaction of the water-column model and the
particle system; see Figure 1 for an animation frame.
Since we perform per-fragment lighting, the viewer
position must be the same so that the water surface
covers the same amount of pixels in the viewport.
The slope threshold that controls the particle
generation was set to 2. On a preliminary test we
measure the number of particles generated by the
system and we set the textures for the particles’
position and velocity as the next power-of-two
resolution. Finally, we set the ratio of 10 steps of
the water-column simulation for 1 step of the
particle simulation. With a time step of 0.003s for
the water-column simulation, the particle animation
is updated every 0.03s (about 33 frames per second).
Table 2 shows the performance results.

One of the bottlenecks found for the water
rendering was the texture access for the terrain
height displacement. It consumed over 50% of the
rendering time for the larger resolution of the
height-fields. This is mainly due to the limitation of
the first generation of graphics cards with float-
point texture access from vertex shaders. However,
the larger the resolution of the height-field was,
more vertices falling on the same pixel of the
viewport had to be processed. This not only
increases the processing time by calculating
redundant pixels, but it also generate aliasing

artifacts, see Figure 10 (b). This indicates that a
LOD (Level Of Detail) method for the height-field
visualization is necessary.

In Figure 9, we show how different properties
related to Equations 10 and 11 affect the water
appearance. We also include the results of a
different sampling of the absorption spectrum for
chlorophyll-rich oceanic waters [19].

Our particle rendering implementation still needs
depth sorting and other visual improvements [32].
The life cycle of the particles must also be extended
to include mist, bubbles and foam formation after
the impact with the main volume of water.

6. Conclusion

We have proposed an optimization of the height-
field water-column volume model for efficient
three-dimensional water flow simulation on terrains.
We showed that the proposed model has the
advantage of low memory consumption. Running
the simulation in parallel on graphics hardware also
aids with realistic rendering of water surfaces with
considerably less data transfer per frame. The
irregular terrain under the water can also be
accurately rendered without simplifications.

The results of simulations running on a legacy
graphics card for different terrains showed a two
order increase in speed with interactive frame rates.
In addition, the compact memory storage makes the
proposed method an attractive approach for water
flow in natural scenery for computer graphics
animation.

As future work, we would like to apply a LOD
method for the height-field visualization, and to
optimize the particle system. We also would like to

10

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

improve the lighting model in the water by
sampling more rays for the ground illumination to
achieve caustics, and to use HDR (High Dynamic
Range) environment cubemaps for better lighting.

Acknowledgement

This work was partially supported by the Ministry
of Education, Science, Sports and Culture, Grant-
in-Aid for Scientific Research (B) 19300022.

References

[1] Anderson, J. D. Computational Fluid Dynamics:
The Basics with Applications. McGraw-Hill, 1995.
[2] Chiba, N., Sanakanishi, S., Yokoyama, K.,
Ootawara, I., Muraoka, K., and Saito, N. Visual
Simulation of Water Currents Using a Particle-based
Behavioural Model. The Journal of Visualization and
Computer Animation, Vol. 6, No. 3, pp. 155-171,
1995.
[3] Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T.,
and Nishita, T. A Simple, Efficient Method for
Realistic Animation of Clouds. In Proceedings of
ACM SIGGRAPH 2000, pp. 19-28, 2000.
[4] Enright, D., Marschner, S., Fedkiw, and R.
Animation and Rendering of Complex Water Surfaces.
ACM Transactions on Graphics, Vol. 21, No. 3, pp.
736-744, 2002.
[5] Foster, N., and Fedkiw, R. Practical Animation of
Liquids. In Proceedings of ACM SIGGRAPH 2001,
pp. 23-30, 2001.
[6] Foster, N., and Metaxas, D. Realistic Animation of
Liquids. Graphical Models and Image Processing, Vol.
58, No. 5, pp. 471-483, 1996.
[7] GPGPU. http://www.gpgpu.org/
[8] Harris, M. Fast Fluid Simulation on the GPU.
GPU Gems: Programming Techniques, Tips, and
Tricks for Real-Time Graphics. Addison-Wesley
Professional, 2004.
[9] Holmberg, N., and Wunsche, B. Efficient
Modeling and Rendering of Turbulent Water over
Natural Terrain. In Proceedings of GRAPHITE 2004,
pp. 16-18, 2004.
[10] Iglesias, A. Computer graphics for water
modeling and rendering: a survey. Future Generation
Computer Systems, Vol. 20, No. 8, pp.1355-1374,
2004.
[11] Irving, G., Guendelman, E., Losasso, F., and
Fedkiw, R. Efficient Simulation of Large Bodies of
Water by Coupling Two and Three Dimensional
Techniques. ACM Transactions on Graphics, Vol. 25,
No. 3, pp. 805-811, 2006.
[12] Iwasaki, K., Dobashi, Y., and Nishita, T. A Fast
Rendering Method for Refractive and Reflective
Caustics Due to Water Surfaces. Computer Graphics

Forum, Vol. 22, No. 3, pp. 601-609, 2003.
[13] Kass, M., and Miller, G. Rapid, stable fluid
dynamics for computer graphics. In Proceedings of
ACM SIGGRAPH 1990, pp. 49-57, 1990.
[14] Kipfer, P., and Westermann, R. Realistic and
Interactive Simulation of Rivers. In Proceedings of
Graphics Interface, pp. 41-48, 2006.
[15] Liu, Y., Liu, X., and Wu, E. Real-Time three-
dimensional Fluid Simulation on GPU with Complex
Obstacles. In Proceedings of Pacific Conference on
Computer Graphics and Applications, pp. 247-256,
2004.
[16] Losasso, F., Gibou, F., and Fedkiw, R.
Simulating water and smoke with an octree data
structure. ACM Transactions on Graphics, Vol. 23,
No. 3, pp. 457-462, 2004.
[17] Maes, M. M., Fujimoto, T., and Chiba, N.
Efficient Animation of Water Flow on Irregular
Terrains. In Proceedings of GRAPHITE 2006,
pp.107-115, 2006.
[18] Miyazaki, R., Dobashi, Y., and Nishita, T. A Fast
Rendering Method of Clouds Using Shadow-View
Slices. In Proceeding Computer Graphics and Imaging
2004, pp. 93-98, 2004.
[19] Morel, A., and Prieur, L. Analysis of Variations
in Ocean Color. Limnology and Oceanography, Vol.
22, pp. 709-722, 1977.
[20] Mould, D., and Yang, Y. H. Modeling Water for
Computer Graphics. Computers & Graphics, Vol. 21,
No. 6, pp. 801-814, 1997.
[21] Müller, M., Charypar, D., and Gross, M. Particle-
Based Fluid Simulation for Interactive Applications.
In Proceedings of ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, pp. 154-159,
2003.
[22] Neyret, F., and Praizelin, N. Phenomenological
Simulation of Brooks. In Proceedings of Eurographics
Workshop on Animation and Simulation, pp. 53-64,
2001.
[23] O’Brien, J.F., and Hodgins, J. K. Dynamic
Simulation of Splashing Fluids. In Proceedings of
Computer Animation, pp. 198-205, 220, 1995.
[24] Policarpo, F., Oliveira, M. M., and Comba, J. L.
D. Real-Time Relief Mapping on Arbitrary Polygonal
Surfaces. Symposium on Interactive three-
dimensional Graphics and Games, pp. 155-162, 2005.
[25] Premože, S., Tasdizen, T., Bigler, J., Lefohn, A.,
and Whitaker, R. T. Particle-Based Simulation of
Fluids. Computer Graphics Forum, Vol. 22, No. 3, pp.
401-410, 2003.
[26] Rochet, F. Simulation Réaliste de Ruisseaux en
Temps Réel. Masters thesis, Université Joseph Fourier,
France, 2005.
[27] Schlick, C. An Inexpensive BRDF Model for
Physically-Based Rendering. Computer Graphics
Forum, Vol. 13, No. 3, pp. 233-246, 531, 1994.
[28] Schlicke, T. Breaking Waves and the Dispersion

11

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

of Surface Films. PhD thesis, University of Edinburgh,
2001.
[29] Schneider, J., and Westermann, R. Towards Real-
Time Visual Simulation of Water Surfaces. In
Proceedings of the Vision Modeling and Visualization
Conference, pp. 211-218, 2001.
[30] Stam, J. Stable Fluids. In Proceedings of ACM
SIGGRAPH 1999, pp. 121-128, 1999.
[31] Sun, Y., Fracchia, F. D., and Drew, M. S.
Rendering the Phenomena of Volume Absorption in
Homogeneous Transparent Materials. In Proceedings
of IASTED International Conference on Computer
Graphics and Imaging, pp. 283-288, 1999.
[32] Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada,
K., Saito, T., Tanaka, K., and Ueki, H. Realistic

Animation of Fluid with Splash and Foam. Computer
Graphics Forum, Vol. 22, No. 3, pp. 391-400, 2003.
[33] Thon, S., and Ghazanfarpour, D. A Semi-
Physical Model of Running Water. In Eurographics
UK 2001 Conference Proceedings, pp. 53-59, 2001.
[34] Thon, S., and Ghazanfarpour, D. Real-Time
Animation of Running Waters Based on Spectral
Analysis of Navier-Stokes Equations. Computer
Graphics International, pp. 333-346, 2002.
[35] Weber, M. J. Handbook of Optical Materials.
CRC Press, 2002.
[36] Wu, E., Liu, Y., and Liu, X., An Improved Study
of Real-Time Fluid Simulation on GPU. Journal of
Computer Animation and Virtual World, Vol. 15, No.
3-4, pp. 139-146, 2004.

Attenuation in transparent materials (Equation 10)

Pure water Chlorophyll concentration of 70
Light scattering
and attenuation
due impurities
(Equation 11)

Disabled c = 0.1 c = 0.5 c = 0.1 c = 0.5

Disabled

k = 0

k = 0.01

k = 0.1

Figure 9. Light attenuation and scattering: 2m-height relief of the character “O” in the middle,

7m of water at the top, 0.5m of water at the bottom.

12

芸術科学会論文誌 Vol. 7 No. 1 pp. 1 - 13

(a)

(b)

Figure 10. Selected animation frames: (a) water collapsing (dimensions: 1.5m2×0.15m, height-field
resolution: 64×64); (b) lake ripples (dimensions: 200m2×50m, height-field resolution: 512×512).

13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

