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Abstract 
 
We present an optimization of the height-field water-column based approach for water simulation, 
providing three-dimensional animation of water flow on natural terrains. Our approach eliminates the 
storage and management of redundant virtual pipes between columns of water and also removes output 
dependency for parallel implementation, making it efficient for interactive computer graphics applications. 
We show a GPU implementation of the proposed method that runs at interactive frame rates with rich 
lighting effects on the water surface, including light wavelength dependent attenuation and light scattering. 
 
Keywords: Natural Phenomena, Physically-Based Animation, Water Simulation, Height-Field, Light 
Transport. 
 

  
Figure 1. Water flowing on irregular terrain. 

 
1.  Introduction 
 
Water representation and animation have been 
intensively investigated in computer graphics due 
to the complexity of its behavior and visualization. 
Although recent research focuses on efficient 
methods to solve the computational expensive 
water simulation, these methods still require 
minutes of calculation time for every animation 
frame. Interactive applications such as landscape 
design, virtual reality, and games, which often need 
three-dimensional water animation at interactive 
frame rates, either lack realistic solutions or they 
have to rely on a two-dimensional plane-based 
simplification of the water surface. 
 
Due to the complexity of the water behavior, there 
is no single method that can capture all the subtle 
effects of the water [10]. Therefore several methods 

must be combined to produce realistic animations. 
Preferably, these methods should be based on 
physics to behave as its physical counterpart and to 
interact with each other. However, computer 
graphics applications don’t need the same degree of 
accuracy as engineering applications, so they 
usually sacrifice accuracy for efficiency. 
 
Water flowing on terrains generates several natural 
phenomena, including rivers, waterfalls, puddles, 
and lakes; see Figures 1 and 10. This flow is mainly 
dominated by gravity and the water is near vertical 
equilibrium against the ground [11]. Since terrains 
are highly irregular, water does not lie 
homogeneously over the terrain. This requires an 
efficient simulation method with good spatial 
handling, but without loss of visual details. It is 
also desirable the visualization to be reasonably 
simple, making the method suitable for computer 
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graphics animation and interactive applications. 
 
We present an optimization of the height-field 
water-column based approach for water simulation 
previously introduced by [23, 20, 9], and a further 
extension of [17]. The general idea of these 
methods is to calculate the hydrostatic pressure in 
columns of water and the flow due to pressure 
difference through virtual pipes between adjacent 
columns. The water columns have variable height 
and lie directly on the terrain, therefore the flow 
calculations are spatially performed only where 
necessary. The method is composed of three 
interacting systems: a water volume model; a 
particle model for splashes and bubbles; and an 
external object interaction model. We show in this 
work an optimization of the water volume model, 
which has several advantages that our approach 
benefits as well: 
 Hydrostatic physics calculation has low 
computational cost; 
 The model intrinsically generates water surface 
phenomena, such as the propagation of waves; 
 All variables are physically based, allowing other 
physical systems to interact with the water 
volume model; 
 The three-dimensional simulation has squared 
computational cost, proportional to the two-
dimensional resolution of the height-field; 
 The top of all columns are known resulting in a 
straightforward water surface geometry extraction 
as a height-field; 
 Low computational cost of optical effects on the 
water surface inherited from other two-
dimensional methods. 

 
There are some limitations as a general solution for 
fluid simulation: 
 The model suffers from vertical isotropy due the 
column representation; 
 Breaking waves and free parts, such as splashes, 
foam, and bubbles can not be directly represented, 
requiring a coupled particle system; 
 Calculation time step must be small otherwise the 
system becomes unstable and oscillates, which 
vexes most time-forward integration methods. 

 
Our contributions to the optimization of the water-
column volume model are: 
 Low memory footprint by reducing the number of 
redundant virtual pipes between columns of water, 
without affecting the results of the physical 
simulation; 
 Parallel promotion of the algorithm by removing 
output dependency on the shared data; 

 Implementation of both the simulation and 
rendering processes on commodity graphics 
hardware, thus reducing data transfer for 
rendering every frame; 
 A single height-field to represent both terrain and 
water surface, reducing the geometry rendered per 
frame; 
 Accurate rendering of refraction, light attenuation 
and scattering, taking into account the water 
depth. 

 
We describe the related work in fluid simulation for 
computer graphics in Section 2. We show our 
contribution to the water model and its 
parallelization in Section 3. We present the 
rendering process along with the light model for the 
water in Section 4. In Section 5, we present the 
results by showing several experiments. We 
conclude this work in Section 6. 
 
2. Related Work 
 
To solve the Navier-Stokes equations (NSE) for 
fluid dynamics, computational models require a lot 
of computer resources in terms of memory storage 
and calculation time [10]. Numerical solutions of 
the NSE [1] can be categorized in Eulerian (grid-
based) and Lagrangian (particle-based) approaches. 
The first subdivides the space in a regular grid and 
observes the fluid that passes through it. The 
second tracks disjoint elements of fluid through 
time. 
 
One of the first attempts to carry out a full three-
dimensional NSE-based simulation in computer 
graphics was the work of Foster and Metaxas [6]. 
They subdivided the three-dimensional space in a 
regular grid, and solved the Navier-Stokes 
equations by discretizing the pressure and velocities 
respectively at the grid’s center and faces. They 
used marker particles to track the fluid surface, and 
alternatively a height-field for liquids. 
 
The most important contribution for stability is the 
work of Stam [30]. The method is made 
unconditionally stable by applying a semi-
Lagrangian method for the advection term of the 
NSE. A two-dimensional implementation on the 
GPU was presented by [8, 36] and a three-
dimensional by [15]. Although these simulations 
run in real-time, they do not address the problem of 
simulating fluids with free boundaries, such as 
water. 
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(a) (b) (c) 
Figure 2. Water flow simulation on terrain using different methods: 

(a) regular grid; (b) particles; (c) columns of water. 

 Figure 3. Water-column model with two cells per 
column (ncell = 2). Virtual pipes created between 

overlapping cells and unobstructed vicinity. 
The free boundary issue is addressed with a hybrid 
particle and level set method [5, 4, 16, 11]. An 
implicit function evolves together with the fluid 
simulation to track the isocontour representing the 
interface of the liquid. Particles are used near the 
interface in the coarse grid of the simulation to 
accurately adjust the surface of the liquid. 
 
Eulerian approaches are not spatially efficient in 
simulating water flow on terrains. Since terrains 
may be highly irregular, the grid structure may 
waste storage space that never contains liquid; see 
Figure 2 (a). 
 
Losasso et al. [16] proposed the use of adaptive 
meshes to alleviate the resolution problem of grid-
based methods. They add finer resolution where 
visual details are necessary. They apply an 
unrestricted octree structure to increase resolution, 
and present a new method of discretizing pressure 
and velocity. Their method reduces the simulation 
time for fluid simulation with fine detail, without 
increasing accuracy error. 
 
Irving et al. [11] proposed a hybrid method of two-
dimensional grid composed of tall cells with linear 
pressure profile, and a three-dimensional grid near 
the interface of the fluid. They use a NSE-based 
solver over both structures by interpolating tall 
cells values accordingly. They apply the 
particle/level set method to track the surface of the 
fluid only in the three-dimensional region. They 
state this combination has performance gains for 
flows heavily dominated by gravity, like in shallow 
water regime. Like other NSE-based solvers, the 
calculation time is still in the order of minutes per 
frame. 
 
Particle-based methods represent water throughout 
the terrain only where needed. Even having a better 
spatial distribution, these methods usually require 
smaller time steps to avoid particles bursting away 
due to attraction and repulsion forces. 
 
Chiba et al. [2] proposed a quasi-physical method 

in which particle interactions occur within a voxel 
space to reduce interactions with distant particles 
and to perform collisions against obstacles. To 
reconstruct the water surface, they use an implicit 
function influenced by the particles. They point out 
that the number of particles must be high to avoid 
surface artifacts. 
 
Müller et al. [21] used Smoothed Particles 
Hydrodynamics (SPH) to simulate fluids by 
interpolating physical quantities, such as viscosity 
and pressure, defined at discrete particles. They use 
point splatting and marching cubes to render the 
surface of liquids. They state that tracking and 
rendering the fluid surface for interactive 
applications remain a challenge. 
 
Kipfer and Westermann [14] presented a GPU 
accelerated particle simulation using the SPH 
method. They use three sorted linear lists to lookup 
for particle collisions and a height-field over the 
particles to represent the surface of the water. 
Although this surface representation does not 
require a dense particle set, it is not volume 
conserving. Surface details, such as waves, depend 
directly on the height-field resolution, which was 
apparently coarse in their examples to keep 
interactive frame rates. 
 
Premože et al. [25] used the Moving-Particle Semi-
Implicit (MPS) method to simulate fluids with a 
level set method to reconstruct the surface. They 
ran a low-resolution simulation for instant feedback, 
and then increased the number of particles for the 
final simulation. Since the MPS method is fully 
Lagrangian, the fluid particles are present only 
where they are needed. However, even a simple 
polygonal scene must be converted into the particle 
representation. 
Lagrangian approaches usually require a 
considerable amount of particles to represent the 
details of the fluid surface, thus increasing storage 
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space and computation time. Additional particles 
do not contribute only to the surface representation, 
they also increase the overall number of particles in 
the simulation; see Figure 2 (b). The surface 
reconstruction is also complex because of 
continuous topology change. 
 
To alleviate the complexity of a three-dimensional 
simulation of water flow on terrains, some works 
[22, 33, 34, 26] focus only on what is seen in 
brooks and rivers, i.e., waves and ripples on the 
water surface near the vicinity of obstacles and 
banks. The water surface is assumed to be two-
dimensional and discretized in a regular grid to run 
the fluid simulation. Based on the resulting velocity 
field, ripples and shock waves are extracted; then 
bump maps are placed and animated on the surface.  
 
Although these methods include realistic surface 
phenomena not present in low-resolution three-
dimensional simulations, they cannot accurately 
represent water flowing on irregular terrains and 
other three-dimensional effects, such as splashes 
and falls without the information about the water 
volume. 
 
3. Proposed Efficient Method 
 
Kass and Miller [13] first proposed to perform 
water simulation with the assumptions of the water 
surface being a height-field and the horizontal 
velocity constant through a vertical column of 
water. Their model uses a simplified subset of the 
fluid dynamics in two-dimensions. However they 
do not model the interaction of external objects and 
free parts such as splashes. 
 
Our physical model is based on the work 
introduced by O’Brien and Hodgins [23]. The 
model is composed of a volume of water which is 
divided into vertical columns in a rectilinear grid. 
Each of these columns is connected to its neighbors 
by virtual pipes. The flow in the pipes is derived 
from the physical laws of hydrostatic pressure. The 
model also supports external forces on the surface 

that are applied as external pressure. Spray particles 
are created when the upward velocity of a portion 
of the surface exceeds a certain height threshold. 
 
Mould and Yang [20] extended this model further 
by running the simulation on an arbitrary height-
field and by reducing the vertical isotropy by the 
subdivision of each column into multiple cells; see 
Figure 3. However, external forces on the water 
surface are unconditionally applied in the vertical 
direction. Certain phenomena also cannot be 
represented with this model such as vortices. They 
also extended the particle model by including 
bubbles rising inside the water. 
 
Later, Holmberg and Wunsche [9] applied this 
model to simulate the natural movement of rivers, 
rapids and waterfalls. They use ray-tracing to 
render the results, which is intended to be a non-
interactive simulation and animation tool. 
 
This model has the same advantage of Lagrangian 
models: since each column lies directly on the 
terrain, the calculation is spatially performed only 
where needed; see Figure 2 (c). The height of the 
columns is variable, and the surface sampling is 
directly related to the discretization of the 
rectilinear grid over the height-field. Therefore, the 
water surface can also be represented as a height-
field over the terrain. 
 
3.1 Water Volume Model 
 
Here we review the model used in the simulation of 
the main water volume and the related equations, 
according to [23, 20, 9]. 
 
All vertical columns start with a pre-defined height 
that can be input by the user, and which varies over 
time during the simulation. Source and sink 
columns retain their height to allow in- and out-
flows to the system. The number of cells per 
column, ncell in Figure 3, can be fixed or input by 
the user depending on the implementation. 
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Virtual pipes are created horizontally between 
adjacent columns where their cells overlap; see 
Figure 3. No pipe is created vertically between 
stacked cells in the same column. Their height 
varies due to the flow of water through pipes 
between neighboring columns. 
 
The flow in these virtual pipes is determined by the 
physics of hydrostatics. The pressure at one point 
of the column is given by: 
 eppghp ++= 0ρ  (1) 
where h is the height of water above the calculated 
point; ρ is the density of the fluid; g is the gravity 
acceleration; p0 is the atmospheric pressure; and pe 
is the pressure due to external forces. 
 
The flow velocity due to the pressure difference 
between two points in adjacent columns is given 
by: 

 ( )
l

pptf tailhead
ρ

ηη −
Δ+= 0  (2) 

b 
h

(a) 

(b) 

neighbor1 neighbor2

Vweir1 Vweir2

Figure 4. (a) Flow through a weir (b) applied to
the discretized water-column model. 

where f is a non-physical frictional coefficient, as 
suggested in [20] to produce a gradual loss of 
energy; η0 is the flow velocity in the previous time 
step; Δt is the simulation time step; and l is the 
length of the pipe. 
 
Given the flow velocity in the pipe, the volume of 
water that should be moved through it is: 
 ctV pipe ηΔ=  (3) 
where c is the cross sectional area of the pipe, i.e. 
the amount of overlap between adjacent cells. The 
volume transferred is translated into height changes 
between the cells. Since mass must be conserved, 
all pipes that are removing fluid from a cell are 
scaled back if the volume of that cell becomes 
negative. When the height of a cell reaches a 
threshold, the cell is considered dry and does not 
transfer fluid out to its neighbors. 
 
Since the flow velocity depends on the previous 
time step, it must be stored in memory for each 
virtual pipe. As the height of the columns changes 
throughout the simulation, virtual pipes must be 
created and deleted as the overlap between adjacent 
cells changes.  
 
To model water that breaks free from the main 
volume of water, such as splashes and waterfalls, 
Holmberg and Wunsche [9] calculates the volume 
of water that flows through a weir; see Figure 4 (a). 
In their work, this model is used when the height of 
a wave crest becomes unstable. The flow rate 
through a weir is given by: 

 gbh 2
3
2 2

3

=ζ  (4) 

where b is the width of the column; and h the 
height of the unobstructed water. The volume of 
water transferred is: 
 ζtVweir Δ=  (5) 
 
The assumption of flow through a weir is a good 
approximation since the flow direction is 
discretized to one of the neighbors, and the flow 
will occur only in the unobstructed direction; see 
arrows in Figure 4 (b). 
 
3.2 Reduction of Memory Requirements 
 
We assume the initial condition of the simulation is 
static, i.e. flow velocities are zero. We then note 
that the pressure difference between any two 
leveled submerged points is the same for adjacent 
columns; for example (p1−p’1) = (p2−p’2) = (p3−p’3) 
in Figure 5 (a). The resulting flow in each pipe, 
Equation 2, will be the same (η1 = η2 = η3). 
 
To reduce the memory storage, we calculate and 
store the flow η of just one pair of those points, e.g. 
pair with pressure difference (p−p’) in Figure 5 (b). 
Consequently, to calculate the transferred volume 
of water, we must check if two cells overlap for 
every simulation step. This process does not 
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increase the overall complexity since the same 
process must be performed in the original algorithm 
to check whether a pipe should be created or 
deleted. Thus we reduce the maximum memory 
requirements per adjacent columns from 2×ncell to 
only 2, i.e. one pipe between adjacent columns and 
one pipe connected to the air, independent of the 
number of stacked cells, see Figure 5 (b). 
 
We also note that the flow through a weir, Equation 
4, does not depend on the flow rate from the 
previous time step, and we adopt this model for all 
flow between a column of water and the adjacent 
air above a lower column, see Figure 7. Besides 
reducing the maximum number of stored virtual 
pipes between adjacent columns to only 1, we also 
have a single model for unobstructed water flow. 
The simulation results show no change in the 
behavior of the water surface, such as the wave 
propagation phenomenon; see Figure 10 (a). 
 
On a two-dimensional rectilinear grid, each column 
has 8 neighbors. To avoid duplicated virtual pipes, 
we store only 4 unique virtual pipes per column, as 
shown in figure 6 (b). Storing only 1 flow velocity 
per neighboring column not only reduces the 
memory footprint, but also reduces the amount of 
memory access and calculation time. For example, 
given a height-field with resolution of 256×256, 
and flow velocity stored as 32-bit floating point 
values as shown in Figure 6 (b), a total memory of 
256×256×(2×ncell)×(4 floats×4 bytes/float) = 4MB 
would be necessary for ncell = 2. This value drops to 

1MB (
celln×2

1  = 25%) with our optimization. 

Although such amount of memory may be low for 
recent hardware, the memory access and the 
calculation to update the flow values are 
256×256×(2×ncell) = 262144 times for ncell = 2, or 
65536 times (25%) with our optimization. These 

values become much more significant for height-
fields with higher resolutions. 

p1

p0+pe

p0+p’e

p2

p3

p’1

p’2

p’3

(b) (a) 
Figure 5. (a) Flow occurs due pressure difference 

between adjacent columns. (b) Flow storage 
reduction. 

p p’ηη  ηη11

ηη22

ηη33

 
3.3 Simulation Parallelization 
 
Recently commodity graphics hardware has 
become inexpensive, programmable, and has been 
used as a general purpose processing unit [7]. The 
GPU (Graphics Processing Unit) is capable of 
running vertex and fragment programs in parallel 
on stream processors. 
 
The first generations of programmable graphics 
hardware can only perform gather memory 
operations, where any stream processor can access 
the input shared data (texture access), but the 
output can only be written in a single memory 
position, i.e. the rendered fragment. 
 
Therefore, to promote parallelization of the water 
simulation, we have to produce an independent 
output. We do that by adding all water inflow from 
neighboring columns, and subtracting the all 
outflow from the column being processed. 
 
For every column, we calculate all volume out-
flowing the cells; Equations 3 and 5. If the volume 
is larger than the column volume, we apply the 
following scale factor to the outflow: 

 
∑ +

=
out

i
weirpipe

column

ii
VV

V
factor scale  (6) 

where Vcolumn is the column volume; out is the total 
of neighbors with outflow through a pipe or a weir; 
Vpipe and Vweir are the respective volumes out-
flowing from the column to the neighbor i. 
 
We can either calculate all neighbors’ outflow 
when processing a single column, or have an extra 
rendering pass to store in memory the outflow 
scaling. We choose the latter since it performs 
about 5 times faster by avoiding the same 
calculation of the same neighbors several times. 
 
We store the simulation data structures in two-
dimensional textures: one for the flow velocity and 
one for the column height, as shown in Figure 6. 
Fragment shaders are then used to update the stored 
values using one-to-one pixel-to-texel mapping [7]. 
 
The input terrain is given by a height-field in a gray 
scale image and its height is scaled and stored in a 
floating-point texture. The sampling for the 
columns of water is created with the same 
resolution as the terrain height-field. To reduce the 
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access to texture memory, we pack the terrain and 
the water columns in a single RGBA texture, where 
the red component has the terrain height, and the 
other components can store cells of a single 
column; see Figure 6 (a). We use the alpha channel 
of the height texture to store the outflow scaling 
factor obtained in Equation 6. 
 
A single texel can store up to 2 cells per column 
(ncell = 2), as shown in Figure 6 (a), resulting in 
minimum texture access during the simulation and 
rendering stages. More cells (ncell > 2) can be stored 
in additional textures, which will hit the overall 
performance due to the extra memory access and 
cell overlap calculations. 
 
We only need to store one flow velocity value per 
one pair of adjacent columns, rather than allocating 
and maintaining all virtual pipes between the fluid 
cells. See Figure 6 (b) for the texture arrangement 
of pipes and flow direction between 8-neighboring 
columns. 
 
We summarize the simulation process, together 
with other auxiliary textures, with the following 
rendering passes: 
I) Update the flow velocities (Equation 2): 
 read a texture with external pressure values 
derived from forces of interacting external 
objects; 

 read the texture with the column heights and 
calculate the pressure difference (Equation 1). 

II) Calculate the outflow scaling (Equation 6): 
 read the updated flow and the column heights to 
calculate the total volume leaving each column; 

 write the scaling value to the alpha channel of the 
column height texture (Figure 6 (a)). 

III) Update the water-column volume: 
 read the flow value between columns and 
calculate the overlapping area between adjacent 

cells (Equation 3); 
 calculate the volume of transferred to the air 
above a lower column (Equations 4 and 5), 
including free parts disconnecting from the 
water-column; 

 sum all inflow volumes and subtract the outflow; 
 write the free volume in another texture with the 
averaged velocity of flows between neighbors. 

 
3.4 Particle System 
 
We implement a simple particle system to illustrate 
the interaction of free parts of fluid, such as 
splashes and falls, with the proposed optimized 
water volume model. We do not consider inter-
particles interaction [9], only the influence of 
gravity. 
 
One of the most useful definitions of breaking 
waves is that breaking occurs when the wave slope 
exceeds a critical angle θ [28]. We let the user 
specify the slope threshold to control the particle 
creation and in consequence, the memory space 
needed to store the particles. 
 
Only the partial volume that exceeds the slope 
threshold is used to generate particles, see Figure 7. 
The rest of the volume, i.e. bellow the threshold, is 
simply transferred to the lower neighbor column. 
 
When a particle collides with the main body of 
water, it generates pressure on the surface, derived 
from a friction force and a buoyant force [20]. The 
volume of collided particle is then absorbed back in 
the main water volume. 
 
Other two textures keep the position and the 
velocity of every generated particle. We use the 
alpha channel of these textures to store respectively 
the external pressure after collision, and the particle 
volume. The resolution of these two textures will 
limit the number of active particles in the system. 
 
The velocity and positions are updated as the 
rendering passes summarized bellow: 
I) Update the particle position 
 read the previous particle position and update it 

terrain 
height 

water cells 
height 

R 

G 

B 

column height flow velocity 

A 

G B

A 
outflow 
scale facto

Figure 7. Slope threshold for breaking waves. 

θ 

flow through 
a weir r 

R 

(a) (b) 
Figure 6. Simulation data textures: (a) terrain 

height packed with two water cells per column in 
one texel; (b) flow through pipes between adjacent 

columns and the flow direction. 
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according to its velocity. 
II) Update the particle velocity 
 read the position and the column heights to check 
the collision of the particle; 

 if they collide, calculate the external forces and 
the resulting vertical external pressure, otherwise 
update the velocity according to the gravity 
acceleration. 

III) Create new particles 
 read  the free volume texture from the GPU to the 
CPU and calculate the number of particles to 
create according to a user-defined unit volume in 
case one particle represents several droplets of 
water; 

 read the position texture and search for empty 
slots (empty volume) to create the new particle; 

 render each new particle as a point in the particle 
position and velocity textures 

IV) Apply collisions as external pressure 
 render each particle as a point in the external 
pressure texture; 

 if the particle has collision information 
(calculated in pass II) write the external pressure 
value and the volume to merge with the water-
column volume. 

 
The particle creation requires the transfer of data 
from the GPU memory to the CPU memory, which 
drastically slows down the overall performance of 
the system. Therefore we combine a number of 
water-column simulation steps followed by one 
particle simulation step. This not only reduces the 
time consuming data transfer operation per water-
column simulation step, but also provides smooth 
particle volume absorption after collision. 
 
4. Rendering 
 
We render the terrain and the water surface as a 
single height-field since they have the same 
resolution and their heights are packed together in a 
single texture. We then interpolate from one 
material to the other with a fragment shader in the 
GPU. This reduces the geometry and the number of 
texture access. 
We use a vertex shader to displace the height of a 
planar grid mesh, which can reside in the GPU 
memory for maximum performance. Therefore, 
there is minimum data transfer to the GPU for 
rendering. 
 
We render the particles as textured point sprites, 
with size proportional to the volume and inversely 

proportional to the distance from the viewer; see 
Figure 1. Then we blend them with the current 
rendered frame. At this time, no sorting and 
complex shading are done when rendering the 
particles. 
 
4.1 Light Transport 
 
For each fragment rendered, we calculate the light 
transport on the surface of the main volume of 
water. All access to the column’s float-point texture 
is performed with bilinear interpolation of its 
heights to avoid visual artifacts due to 
discretization of the height-field. 
 
We calculate light reflection R and refraction T on 
the water surface based on the eye direction E and 
the surface normal N; refer to Figure 8. We use 
Snell’s law for the refraction of light from the air to 
the water, with refractive indices of 1 and 1.33 
respectively. 
 
The Fresnel factor defines the ratio of reflection 
and refraction of non-polarized light on a dielectric 
material. We use the Schlick’s approximation [27] 
for the Fresnel reflectivity given by: 
 ( )( )50.11 EN ⋅−−+= λλ ffR  (7) 
where fλ is the spectral distribution of the Fresnel 
factor at normal incidence. The spectral distribution 
fλ depends on the wavelength of the light λ, but we 
use a single value for all spectrum. This value is 
≈0.02 for water [29]. The transmission coefficient T 
is the complement of the reflectivity for energy 
conservation, given by: 
 RT −=1  (8) 
 
The intensity of light arriving in the eye direction E 
is then given by: 
 TRE TIRII +=  (9) 
where IR is the intensity of light coming from the 
reflected ray R, which is mapped to a cubemap, 
assuming that the environment is far away from the 
surface. IT is the light coming from the refracted ray, 
calculated as follows. 
 
We accurately compute the intersection of the 
refracted ray and the terrain ground through a linear 
search with fixed increments δ, followed by a 
binary search [24] with increments of ±δ/2level, 
where level is the step number of the binary search. 
Refer to Figure 8 for a schematic diagram of the 
process. 
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The attenuation of light in transparent volumes 
does not only decrease the color intensity, but also 
deepens the color saturation and changes the hue 
[31]. The internal transmittance for liquid solutions 
is given by the Beer’s law: 
  ( ) ( )clalT λλ −=10,internal  (10) 
where λ is the light wavelength; a(λ) is the 
absorption spectrum of the material; c is the 
solution concentration; and l is the length of the 
light path. We sample the absorption spectrum of 
pure water for the RGB wavelengths, with 
coefficients (0.648, 0.053, 0.036) m−1 respectively 
[35]. This approximation may introduce significant 
errors due to spectrum undersampling [31]; 
however it results in a plausible water appearance. 
 
We assume that the highest contribution of light 
under the water comes from the vertical direction 
above. The lighting in the ground is then calculated 
from the intensity of light coming from the vertical 
refracted ray Tg, shown in Figure 8. The Fresnel 
term is also applied to modulate the intensity 
transmitted to the water. The diffuse lighting at the 
ground is given by the dot product Ng·(−Tg), and 
the intensity is attenuated by the height h. 
 
We also assume the water has impurities that not 
only further attenuates the light, but also 
contributes with scattered light. For the attenuation, 
we use a simple exponential decay, given by: 
  (11) ( ) klelA −=

where k is the attenuation coefficient, and l is the 
length of the light path. 

 
We use a single scattering method [3, 18] at each 
linear search interval δ. This approach has low 
computational cost since it shares the height data 
already available from each step of the depth search 
process. However, if the interval δ is too large, the 
scattering calculation may introduce visual artifacts 
to the water appearance. 
 
The vertical incoming light is modulated by T·Ti. 
The light intensity arriving at the refracted ray in 
the direction T is the ground lighting plus the 
scattered light due to impurities, given by: 

( )( ) ( ) ( )
( ) ( ) ( )δδδλ
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(12) 

where IT, ILg, ILi are respectively the light 
intensities at the surface of the refracted ray from 
the viewer direction, the light coming from the Lg 
and Li directions. TTg and TLi are respectively the 
Fresnel transmission factors (Equation 8) for the 
vectors Tg and Li (refer to Figure 8). n is the 
number of steps in the linear search inside the water 
and above the ground level; hi is the height from 
the step position to the water surface; and depth is 
the length resulting from the ground’s depth search. 
 
5. Results 
 
All the experiments shown here ran on an Intel 
Pentium 4 processor at 3.4GHz with 1GB of 
memory, and an NVIDIA GeForce 6600GT 
graphics card with 128MB of memory. OpenGL 
and OpenGL Shading Language were used for all 
GPU operations. 
 
We first ran a simulation with different column 
subdivisions of one, two and three cells per column. 
The performance drop for two and three cells per 
column was respectively around 60% and 80%. The 
number of cells per column must be carefully 
chosen since it has a significant impact in the 
simulation performance. More cells per column 
must be used when the application requires more 
samples of the vertical velocity. Otherwise one cell 
per column is sufficient for the appearance and 
animation effects shown in Figures 1, 9, and 10. 
 
We implemented only one cell per column for 
efficiency and aiming only for the water surface 
appearance. See Figure 10 for some frames of the 
animation. Table 1 shows the performance results 
for different terrains running at simulation time 
steps of 0.005s and with the particle system 

E N 
R 

T 

environment 
cubemap

Figure 8. Light transport: reflection, refraction, 
attenuation, and single scattering. 
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Table 1. Computational time of simulation for 
different height-field resolutions. 

Resolution 
(pixels) 

Simulation 
on the CPU 

Simulation 
on the GPU Speed-up

Table 2. Computational time of simulation and 
rendering for 1 animation frame. 

Resolution 
(pixels) 

10 steps 
of water 

simulation

1 step of 
particle 

simulation 

Per-
fragment 

water 
rendering 

Point sprite 
particle 

rendering*
* 64×64 158 ms 2 ms 

(500 fps) 79× 

64×64 11 ms 50 ms 
*(2106) 129 ms 269 ms 128×128 665 ms 4 ms 

(250 fps) 166× 

128×128 31 ms 142 ms 
*(5800) 229 ms 697 ms 256×256 2705 ms 13 ms 

(76 fps) 208× 

256×256 122 ms 141 ms 
*(7491) 677 ms 478 ms 512×512 11055 ms 48 ms 

(20 fps) 230× 

512×512 471 ms 342 ms 
*(12791) 3265 ms 1155 ms 

*(average number of particles generated)
**with motion blur

disabled. 
 
For the simulation to match a real-time animation, 
it would be required to run at 200 frames per 
second (1/0.005s). That is true for smaller height-
fields up to 128×128 pixels running on the GPU. 
For larger height-fields, the animation runs slower 
than the corresponding simulation time step. 
Nevertheless, the simulation presents a two order 
speed increase and its behavior can be observed at 
interactive frame rates. 
 
We set up the next experiment with a single height-
field but with different resolutions to compare the 
interaction of the water-column model and the 
particle system; see Figure 1 for an animation frame. 
Since we perform per-fragment lighting, the viewer 
position must be the same so that the water surface 
covers the same amount of pixels in the viewport. 
The slope threshold that controls the particle 
generation was set to 2. On a preliminary test we 
measure the number of particles generated by the 
system and we set the textures for the particles’ 
position and velocity as the next power-of-two 
resolution. Finally, we set the ratio of 10 steps of 
the water-column simulation for 1 step of the 
particle simulation. With a time step of 0.003s for 
the water-column simulation, the particle animation 
is updated every 0.03s (about 33 frames per second). 
Table 2 shows the performance results. 
 
One of the bottlenecks found for the water 
rendering was the texture access for the terrain 
height displacement. It consumed over 50% of the 
rendering time for the larger resolution of the 
height-fields. This is mainly due to the limitation of 
the first generation of graphics cards with float-
point texture access from vertex shaders. However, 
the larger the resolution of the height-field was, 
more vertices falling on the same pixel of the 
viewport had to be processed. This not only 
increases the processing time by calculating 
redundant pixels, but it also generate aliasing 

artifacts, see Figure 10 (b). This indicates that a 
LOD (Level Of Detail) method for the height-field 
visualization is necessary. 
 
In Figure 9, we show how different properties 
related to Equations 10 and 11 affect the water 
appearance. We also include the results of a 
different sampling of the absorption spectrum for 
chlorophyll-rich oceanic waters [19]. 
 
Our particle rendering implementation still needs 
depth sorting and other visual improvements [32]. 
The life cycle of the particles must also be extended 
to include mist, bubbles and foam formation after 
the impact with the main volume of water. 
 
6. Conclusion 
 
We have proposed an optimization of the height-
field water-column volume model for efficient 
three-dimensional water flow simulation on terrains. 
We showed that the proposed model has the 
advantage of low memory consumption. Running 
the simulation in parallel on graphics hardware also 
aids with realistic rendering of water surfaces with 
considerably less data transfer per frame. The 
irregular terrain under the water can also be 
accurately rendered without simplifications. 
 
The results of simulations running on a legacy 
graphics card for different terrains showed a two 
order increase in speed with interactive frame rates. 
In addition, the compact memory storage makes the 
proposed method an attractive approach for water 
flow in natural scenery for computer graphics 
animation. 
 
As future work, we would like to apply a LOD 
method for the height-field visualization, and to 
optimize the particle system. We also would like to 
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improve the lighting model in the water by 
sampling more rays for the ground illumination to 
achieve caustics, and to use HDR (High Dynamic 
Range) environment cubemaps for better lighting. 
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Attenuation in transparent materials (Equation 10) 

Pure water Chlorophyll concentration of 70 
Light scattering 
and attenuation 
due impurities 
(Equation 11) 

Disabled c = 0.1 c = 0.5 c = 0.1 c = 0.5 

Disabled 

  

k = 0 

  

k = 0.01 

  

k = 0.1 

  
Figure 9. Light attenuation and scattering: 2m-height relief of the character “O” in the middle, 

7m of water at the top, 0.5m of water at the bottom.  
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(a) 

 
(b) 

Figure 10. Selected animation frames: (a) water collapsing (dimensions: 1.5m2×0.15m, height-field 
resolution: 64×64); (b) lake ripples (dimensions: 200m2×50m, height-field resolution: 512×512). 
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