
芸術科学会論文誌 Vol.2 No.1 pp.61-70

Automatic Generation of 3-D Linear Fractal Shapes with Quadratic

Map Basins Animation

Hussein KARAM

Ain Shams University

Faculty of Science

Math. & Computer Sc. Dept.

Abbassia, Cairo, Egypt

Masayuki NAKAJIMA

Graduate School of Information Sc. & Eng.,

Tokyo Institute of Technology

2-12-1 O-okayama, Meguro-ku, Tokyo,

152-8552 Japan

Abstract

Quadratic map basins is a method used to generate
the images of Julia and Mandelbrot sets and has been
applied to visualize the attractors of iterated function
systems (IFS). Three dimensional extension of such
mapping with animation is an aspiring goal and a chal-
lenging task. In this paper an extension algorithm of
quadratic map basin for classifying points in the com-
plement of a 3-D linear fractal shapes are discussed.
Such extension produces fractal surfaces that exhibit
self-similarity and suggest smooth evolution under an-
imation. The proposed technique has fast computa-
tions and simple representation whereby a computer
can automatically select parameters and generate a
large collection of aesthetically appealing 3-D fractal
patterns. The simple representation and the speed of
computation of our algorithm make 3-D fractal pat-
terns reliable for interactive machine.

1 Introduction

Several methods for modeling and realistic visualiza-
tion of complex forms found in nature have been de-
veloped in the history of computer graphics. These
methods are more or less related to Mandelbrot’s frac-
tal geometry of nature [15]. Fractal methods are quite
popular in the modeling of natural phenomena in com-
puter graphics ranging from random fractal models of
terrain [15], to deterministic botanical models such as
L-systems [17], iterated function systems (IFS), recur-
rent iterated function systems (RIFS) and language
iterated function systems [1, 5, 3, 4, 16]. On the other
hand, methods for classifying points in the comple-

ment of a fractal shapes were originally developed in
the complex plane C based on the escape-time algo-
rithm [19, 12]. The escape-time visualization method
was extended from Julia and Mandelbrot sets to more
higher order [21, 22], and several methods for classi-
fying divergent points in the complement of a fractal
shapes to generate fractal patterns in two dimension
were described in [18, 10, 8, 24]. These methods plot-
ting simple discrete level sets by counting the number
of function applications required to transform a point
outside a large circle. Although these methods gener-
ate an aesthetically appealing 2-D fractal patterns, an
extension algorithm for visualizing points in the com-
plement of the 3-D fractal patterns still aspiring goals,
challenging tasks and harder to be described. In this
paper we propose an extension algorithm for rendering
the IFS escape-time behavior in three dimension with-
out inverting the IFS transformations which is com-
putationally expensive, therefore reducing the time of
complexity. The proposed algorithm has two basic
steps. The first is based on the way of approximat-
ing the fractal attractor and the second is for creating
numerical data that characterize the space outside the
attractor. The advantages of the proposed method are
that it is neither explicitly define regions, nor follows
all point iteration possibilities. Moreover, it is sim-
ple to implement and its speed of computation allows
visible surface rendering to be performed simply and
efficiently. In addition makes rendering 3-D fractal
patterns reliable for interactive machines.

The paper is organized as follows. Section 2, sur-
veys the key principles and basic notions of escape-
time visualization method, iterated function systems

61

芸術科学会論文誌 Vol.2 No.1 pp.61-70

IFS, and recurrent iterated function systems RIFS.
The dynamics of the escape-time classifications of
quadratic fractals, IFS and RIFS are explained in sec-
tion 3. In section 4, the proposed algorithm for ex-
tending the IFS escape-time from 2-D to 3-D linear
fractals is explained. Fractal rendering technique is
introduced in section 5. Some experimental results
with discussion are given in section 6. Finally, con-
clusion and direction for future work are discussed in
section 7.

2 Background and Basic No-

tions

The common ways to generate fractals is through it-
erated function systems IFS, recurrent iterated func-
tion system RIFS and quadratic map basins based on
escape-time algorithm. The mathematical theory of
both IFS and RIFS are based on the contraction map-
ping theorem which is described in details in [2, 6, 13].
Mathematically, the IFS is usually defined as a pair
{X ; Tn, n = 1, 2, · · · , N}, where X is a complete met-
ric space and each Tn are affine contractions, that is

Ti(x) = Cix + Bi (1)

where Ci is a square matrix with n rows and Bi

is a vector with n elements. By a theorem of
Hutchinson[13], there exist for each IFS a single com-
pact non empty set Â, called its attractor which is the
union of images of itself under the IFS maps, that is,
Â =

⋃N
i=1 Ti(Â). On the other hand, recurrent model-

ing is the process of partitioning an object into compo-
nents and representing each component using smaller
copies of itself and/or other components [2, 3]. The
determination of which components are used is con-
trolled by a graph. It consists of an IFS W = {Ti}Ni=1

as well as a control graph G consisting of N vertices
corresponding to the IFS maps and directed edges de-
noted by the ordered pair < i, j >. The notation
< i, j >∈ G indicates that graph G contains a di-
rected edge from vertex i to vertex j, and implies that
transformation Tj may be applied directly after trans-
formation Ti. Figure 1, shows an example of a directed
graph with N = 3 and numbers pij ≥ 0 which repre-
sents the probabilities of transfer among the vertices.

P23

p
31

p
12

1
2

3

p
11

p
22

p
33

Figure 1. RIFS Directed Graph Example.

Quadratic map basins based on escape-time algo-
rithm was originally developed as a method for visu-
alizing the dynamics of complex quadratic fractals and
has been extended to linear fractals modeled by IFS
and RIFS. An overview of the 2-D rendering methods
classifications of the dynamics for the quadratic itera-
tion maps and its corresponding IFS escape-time are
shown in figure 2(a)− (b).

Geometry
 Only

Distance
Estimator

Integer Escape

 Time

Continous
Escape Time

Quadratic Iteration

 z z * z + c
c belong to the Mandelbrot set

Filled in
Julia set

Complement of

Filled-in Julia set

Geometry and
Dynamics

Potential

Function

(a)

62

芸術科学会論文誌 Vol.2 No.1 pp.61-70

(b)

Figure 2. 2-D rendering methods classifications in
(a) Quadratic maps and (b) IFS maps.

3 Escape-time Classifications

Escape-time method has two forms: the first one is
called discrete form and the other is called continu-
ous form[10, 24]. The discrete form of the escape-
time classification counts the number of iterations for
a point to iterate outside the infinity circle. The con-
tinuous form smoothly interpolates the area between
the discrete escape-time boundaries based on the loca-
tion of the point that escapes the infinity circle. This
section briefly explains the different escape-time forms
for representing the 2-D fractal patterns using the IFS
and their corresponding methods of the quadratic it-
eration function. Then, our extension algorithm of the
IFS escape-time computation from 2-D to 3-D fractal
patterns will be discussed in the next section.

3.1 Discrete Escape-time

Definition 3.1 (Quadratic Discrete Escape-time)
Given the function Fc(z) = z2 + c, a disk DR centered
at the origin and of radius R sufficient such that the
filled-in Julia set Kc ⊂ DR, then the discrete escape-
time DT : C → Z is given by

DT (z) = min{t : ||F t
c (z)|| ≥ R} (2)

=

{
1 + DT (Fc(z)) if ||z|| < R

0 otherwise

3.2 Discrete Escape-time for IFS and

RIFS

The concept of the escape-time function can be ex-
tended for IFS in which all transformations are invert-
ible. In order to define the escape-time function for
iterated function systems, let us review the analogous
concept for Julia sets. The Julia set for the quadratic
mapping Equation(1), can be viewed as the attractor
Â defined by the nonlinear IFS:

T1(z) =
√

z − c, T2(z) = −√z − c (3)

Equation (8), illustrate that inversion of an IFS is re-
quired to compute its escape-time classification.

Definition 3.2 (IFS Discrete Escape-time)
Given an IFS W = {T1, T2, · · · , TN} with attractor
Â, let DR be a disk of radius R centered at the origin
sufficiently large such that,

W (DR) ⊂ DR, (4)

then the IFS discrete escape-time is given by the
function DT : R2 → R which is defined recurrently
as:

DT (x) =

{
1 + MAX if x ∈ DR

0 otherwise

Where,

MAX = maxi=1,2,..,N DT (T−1
i (x), DR)

The discrete escape-time function is the maximum
number of inverse transformations T−1

i ∈ W−1 nec-
essary to iterate x to a point outside DR.

Definition 3.3 (RIFS Discrete Escape-time)
Given an RIFS W, G with attractor Â, Let R > 0 sat-
isfy condition (10). Then the discrete escape-time is
given by DT (x) = maxi=0,..,N DTi(x) where the func-
tions DTi : R2 → R are defined as follows

DTi(x) =

{
D if x ∈ DR

0 otherwise

Where,

D = 1 + max<j,i>∈G DTj(T−1
i (x))

63

芸術科学会論文誌 Vol.2 No.1 pp.61-70

3.3 Continuous Escape-time Function

A continuous escape-time function requires a means to
interpolate smoothly between the boundaries of the
discrete escape-time level sets. Computation of the
continuous escape-time consists of computing the dis-
crete escape-time and determining the residual of the
point just before it escapes the infinity circle.

Definition 3.4 (The Residual Function) Given
an (R)IFS W = {T1, T2, · · · , TN} and the radius R

of the infinity circle, interpolation between the bound-
aries of the discrete escape-time level sets is given by
the residual function Resi defined as

Resi(x) =
log(||x||2/R2)

log(||x||2/||T−1
i (x)||2) (5)

for each map T−1
i of the inverted IFS. We define the

residue of an IFS as:

res(x) = max
i=1,···,N

Resi(x) (6)

The residue components and the resulting maximum
for IFS of the Sierpinski triangle are shown in figure
3. The left three images plot the resi() function for
i = 1, 2, 3 respectively. The image on the right plots
the resulting res() function.

Figure 3. Residual function for an IFS

Definition 3.5 (Continuous Escape-time) Let
W = {T1, T2, · · · , TN} be an IFS with invertible trans-
formations and attractor Â. Let R > 0 satisfy condi-
tion (9). The continuous escape-time CT : R2 → R is
defined as follows

CT (x) =




1 + MAXX Cond1
res(x) Cond2

0 otherwise

Where,

MAXX = maxi=1,···,NCT (T−1
i (x))

Cond1 =if x ∈ DR, T−1
i (x) ∈ DR(∃i)

Cond2 =if x ∈ DR, T−1
i (x) /∈ DR(∀i

y1y0

y2

y4

y3

Figure 4. Continuous escape-time function

The diagram shown in Figure 4, illustrates the con-
tinuous escape-time for five points y0, · · · , y4 with in-
vertible transformations IFS = {T1, T2, T3}. In case
of a point y0, CT (y0) = 0, because the point satisfies
||y0|| ≥ R, R is the radius of the circle. For a point y1

we have ||y1|| < R but all pre-images of y1 have norm
greater than R thus, 0 < CT (y1) < 1. The Point y2

has two pre-images outside the disk and one on the
boundary hence, CT (y2) = 1. For points, y3 and y4

we have 1 < CT (y3) < 2 and CT (y4) > 2.

4 Our Proposed Approach

This section introduces a new extension algorithm of
the quadratic map basins for rendering the IFS escape-
time behavior in three dimension without inverting
the IFS transformations that is usually required and is
computationally expensive. The original computation
of the IFS escape-time in 2-D as given by definition
3.1 maps pixels into classified regions such that the
proper transformation would be applied to any point
based on the region containing the point. Its dynamics
associates different colors to separate intervals of dis-
tance values based on the region containing the point.
The question which may arises is how we can measure
the dynamics of the IFS escape-time in 3-D. In this
paper we use a concept called height field to satisfy
such purpose. Therefore, instead of varying colors, we

64

芸術科学会論文誌 Vol.2 No.1 pp.61-70

vary the height of the points, thus representing the
distance value as a height field. The concept of height
field is motivated by a research on measure theory
[26, 4, 13], but because the terminology of height field
is convenient in the domain of computer graphics we
replace the terminology of measures. The reason for
choosing the measure theory is based on the fact that
linear fractals are often attractors for the IFS and oc-
cur as the supports of probability measures associated
with functional equations. The height field is given as
follows: Based on measure theory concept [26, 13],
we defined a canonical projection σ : R2 × R → R2,
where, σ(x, z) = x. Thus, if B ⊂ R2 × R be a height
field such that (x, z1) ∈ B implies there exists no other
point (x, z2) ∈ B with z1 �= z2. The height field eval-
uates like a function B : R2 → R defined as follows:

B(x) =

{
z if (x, z) ∈ B

0 otherwise
(7)

Furthermore, define the maximum of two height
fields B1, B2 as follows:

max(B1, B2) =

{
{(x, z) : x ∈ σ(B1)

⋃
σ(B2),

z = max(B1(x), B2(x))} (8)

The maximum operator given by equation (8) per-
forms the the same way that a z-buffer [7] maximizes
the z-component of geometry to produce correct visi-
ble surface classifications. In terms of measure theory,
the set B(x) is the measure [26]. The height field def-
inition given by equations (7) and (8) measures and
display the dynamics of the escape-time behavior by
storing prior escape times in the complement of the
fractal attractor to avoid inverting the IFS transfor-
mation given in definition 3.1 which is required to
compute its escape time classification, and their re-
computation for later calculations. Unlike the defi-
nition 3.1 which maps pixels into classified regions in
2-D which is not sufficient for further extension. Based
on equations 7 and 8 and by analogous to the block
coding IFS techniques of Jacquin [14], our idea is to
map classified regions into pixels. In order to satisfy
this condition we have to map the disk DR instead
of the inverse-mapping of the given point x given by
definition (3.1). Therefore, we’ll introduce a paral-
lel (equivalent) definition to the definition (3.1) called
3-D direct escape-time.

Definition 4.1 (3-D Direct Escape-time) Given
W , Â and DR as in definition 3.1. Then the direct
escape-time can be given by DT (x, I), where I is the
unity transformation I(x) = x∀x. Now DT (x, T) op-
erates on both a point x ∈ R2 and a homogeneous 3×3
transformation matrix T and is defined as

DT (x, T) =

{
1 + MAXXX if x ∈ T (DR)

0 otherwise

where,

MAXXX = maxi=1,···,NDT (x, T ◦ Ti)

The notation “T ◦ Ti” refers to a transformation
composition and indicates that transformation T may
be applied directly after transformation Ti. Defini-
tions (3.1) and (4.1) are equivalent because of three
categories. First, definition (4.1) shows that alterna-
tively one can map the Disk DR instead of inverse
mapping the point x. Second, computing a point x

in the image of a region x ∈ T (DR) is equivalent
to computing the inverse image of a point x in the
original region T−1(x) ∈ DR. Third, definition 4.1
doesn’t use any IFS inversion, and directly worked by
mapping classified regions into pixels which will be
useful for further extensions with the height fields.
Consequently, given an IFS (W = {T1, · · · , TN})
with attractor Â, and DR be a disk satisfies condi-
tion (4). Then define a new three dimensional IFS,
Ẁ = {T̀i}Ni=1 constructed from Ti with

Ti =


 ai bi ei

ci di fi

0 0 1




by the following homogeneous transformation ma-
trices:

T̀i =




ai bi 0 ei

ci di 0 fi

0 0 1 1
0 0 0 1




T̀i operates as Ti in the first two columns, but trans-
lates by one in the third. By this extension, the dy-
namics of the direct escape-time method can be mea-
sured with the height fields by the following function:

DT : Rn → R

DT (x) = maxn=1,···,∞Bn(x)

65

芸術科学会論文誌 Vol.2 No.1 pp.61-70

Where Bn is the sequence of height fields defined as:

B0 = {(x, z) : x ∈ DR, z = res(x)},
Bn = maxi=1,···,N T̀i(Bn−1)

(9)

This sequence of height fields Bn refines the IFS at-
tractor as n increases. For example, B0 contains the
points whose continuous escape-time is in [0, 1] and in
general, Bn contains the points whose continuous es-
cape falls between n and n+1 inclusive. The diagram
shown in Figure 5 demonstrates an example for two
height field levels with different iteration. The height
field behaviors maximizes the N individual escape-
time component in the same way that a z-buffer maxi-
mizes the z component of geometry to produce correct
visible surface classification.

Figure 5. Height field level example illustration

5 Fractal Rendering Technique

One fascinating aspects of fractals generated by
quadratic maps is the beauty of their graphical repre-
sentations. This section describes the rendering tech-
nique of the proposed IFS escape-time extension al-
gorithm of the quadratic map basins in three dimen-
sion. From its inception, the method of ray tracing
has always been the technique of choice when ulti-
mate realism of computer generated images[25, 20, 9].
Based on the principle of ray tracing, a similar use of
it for rendering the IFS escape-time behavior in 3-D
will be given based on a previously discussed height
field. The basic operation in the ray tracing scheme
is the computation of the first intersection of a given
ray in a three dimensional scene with the set of all ob-
jects contained in the scene. Therefore, the similarity

between the ray tracing operation and the suggested
height field operation is that, the visual image pro-
duced by a height field is a function of the viewpoint,
the nature of the light source, the albedo of the sur-
face and other parameters [23, 27]. The function of
the height field is to store prior escape times in the
complement of the fractal attractor to avoid inverting
the IFS transformation given in definition 3.1 which
is required to compute its escape time classification
and their re-computation for later calculations. In our
case we render the IFS escape-time behaviour in 3-D
by approximating its attractor say Â, with a set of
small spheres covering such attractor. In addition,
the use of hierarchical bounding volumes lends itself
very naturally to the attractor of the IFS. This oc-
cur by evolving only a piece of the fractal surface at a
time using a subdivision tree and enclosing each part
of the surface with some bounding volume or extent
E. The extent E of an object is the region of space
occupied by the object. Such tree is constructed by
recursively subdividing a previously discussed height
field which is the escape trajectory of a given point up
to some predefined maximum length say m. Since the
dynamics of escape-time method is based on the prin-
ciple of counting the number of iterations necessary to
force a given point z outside a large disk of radius R.
Then assign this number as a color to the given point
z. Figure 6 shows such dynamics with different cases
for iterating a given point z with magnitude |z| in a
complex plane C for the unit circle.

points with |z|>1,
tends to infinty.

points
with |z|<1
tends to the
origin

point with |z|=1
remains on the circle

X

Y

Figure 6. A unit circle with orbits classifications.

Based on such principle, the color of a given point
is assigned to the norm of the maximum height field
calculated from equation (8) according to the number
of subdivisions tree at different levels that forces the
point to escape outside a disk of radius R. In order to

66

芸術科学会論文誌 Vol.2 No.1 pp.61-70

differentiate between the escaping points and the non-
escaping one, we associate to the non-escaping points
some specific color. The process of our algorithm can
be described as: follows:

Step1 (Initialization)
• Select some suitable attractor domain D for
drawing.
• Set the transformation functions Ti

• Assign the value parameters “a-f” of each Ti.
Step2 (Loop)
• For all pixels (x,y) in the domain D do
Step3 (Iteration)
• Calculate the residual function of the given pixels
of each Ti.
• Calculate the height field levels function of each Ti.
• Approximate the fractal attractor with the height
field previously described.
Step4 (Fractal Rendering)
• Calculate the maximum value of height fields
(Equ.(8)) of a given point (x,y).
• Render the approximated fractal attractor.
• Assign the appropiate color of a given point.

6 Experimental Results and

Discussion

A critical review of previous algorithms for comput-
ing approximations to both quadratic and IFS frac-
tal maps in 2-D has provided new insights into how
more general and efficient algorithms may be designed
specifically for fractal patterns. In this paper we pro-
posed an extension algorithm for approximating the
fractal attaractors of the IFS escape-time in 3-D. Our
experimental results demonstrate some of the varied
shapes that our proposed algorithm can model. Fig-
ure 7, presents the output of our algorithm on the
Sierpinski triangle in which the height field B0 is com-
puted using the residual function, whereas B1 is the
maximum of T̀1(B0), T̀2(B0) and T̀3(B0). Figure 8,
shows a 3-D animation of the sierpinski triangle. Fig-
ure 9(a)−(d), demonstrate a 3-D animation of some of
Sierpinski hyperbolic platonic solids. Figure 10, illus-
trates an animation of the self-similar Menger Sponge
fractal which is a three dimensional analogs of Sierpin-
ski triangle with different levels. Since one fascinat-

ing aspects of fractals is the beauty of their graphical
representations and provides a basis for modeling the
infinite detail found in nature. Figure 11 shows one
results satisfied such aspects. The resulting image re-
sembles tree and it is a three dimensional analogs of
Sierpinski triangle with about 131072 equivelant prim-
itives and is renderd in aproximately 51 : 14 seconds.
Table (1) shows the rendering running time (execution
time) for the experimental results given in this paper,
where L denotes the maximum iteration level.

Figure 7. Sierpinski Triangle with height fields

Figure 8. 3-D Sierpinski Triangle Animation

67

芸術科学会論文誌 Vol.2 No.1 pp.61-70

(a) (b)

(c) (d)

Figure 9. 3-D Sierpinski hyperbolic animation

(a) Level =1 (b) Level =2 (c) Level =3

Figure 10. Menger sponge animation.

Figure 11. Tree fractal pattern.

In terms of the complexity time, our proposed algo-
rithm has O(log(n)) execution time compared with
O(n) execution time for other proposed grid tech-
niques [10, 24], where n is the maximum number of
iteration level. The proof of such complexity time is
given by analyzing the algorithm pseudcode given in
section 5. In such case the time complexity is based
on the starting selected point in the Domain D, the
way of applying to this point the tree of sequences of
the transformation Ti and the order of constructing
the tree of transformations. In our case such order is
speciefied as a height-field depth-first order in which
all transformation sequences with iteration “n” is ex-
tended to its maximum depth before other sequences
are performed. Figure 12 illustrates such tree, where
the numbers {1, 2, · · · , 12} refer to the order of the
height field computation of points in the tree of im-
ages.

1 5 9

11 1272 3 4 6 108

Figure 12. Depth-first tree order illustration.

Consequently, in the algorithm pseudcode specified
by “Step2(Loop)” all the internal nodes of a subdivi-
sion tree are at levels less than “k” for some k. Then it
is obvious that there can be at most 2k external nodes
in the tree. Hence,

n ≤ 2k (10)

By taking the logarithum “log” to both sides of
equation (10), we get

l ≥ log(n) (11)

In equation (11), the parameter l = k log(2) is con-
stant, therefore complete the proof.

Table (2), illustrates the complexity rendering time
comparison between our algorithm and other proposed

68

芸術科学会論文誌 Vol.2 No.1 pp.61-70

techniques [10, 24, 22] for some fractal patterns. From
the given results one can see that our algorithm gives
satisfied 3-D fractal shape rendering results in a rea-
sonable time. Therefore, makes the rendering process
of the 3-D fractals reliable for interactive machine. We
list in tables 3, 4, and 5, the IFS code values of the
parameters “a-f” for the transformation Ti given in
equation 1 and shown in the experimental results.

Table (1), Rendering Execution time Illustrations
Shape L RET

Menger Sponge 1 01.117 Sec.

Menger Sponge 2 10.233 Sec.

Menger Sponge 3 26.654 Sec.

Sierpinski Triangle 6 42.467 Sec.

Sierpinski Tetrahedron 3 53.2133 Sec.

Sierpinski Hyperbolic Octahedron 3 59.721 Sec.

Sierpinski Hyperbolic Cube 3 63.874 Sec.

Sierpinski Hyperbolic Dodecahedron 3 66.132 Sec.

Tree 7 51.14 Sec.

Table (2), fractal rendering complexity time.
Shape n Grid Our algorithm

Menger Sponge 3 48.27 28.19
Sierpinski triangle 4 51.39 30.51

Sierpinski Tetrahedron 3 53.84 34.56

Table (3). Sierpinski triangle IFS codes.
T a b c d e f

1 0.500 0.0 0.0 0.500 0.0 0.0
2 0.500 0.0 0.0 0.500 0.500 0.0
3 0.500 0.0 0.0 0.500 0.250 0.433

Table (4). Menger Sponge IFS codes.
T a b c d e f

1 0.0 0.577 -0.577 0.0 0.095 0.589
2 0.0 0.577 -0.577 0.0 0.441 0.789
3 0.0 0.577 -0.577 0.0 0.095 0.989

Table (5). Sierpinski Tetrahedron IFS codes
T a b c d e f

1 0.0 -0.50 0.50 0.0 0.50 0.0
2 0.0 0.50 -0.50 0.0 0.50 0.50
3 0.50 0.0 0.0 0.50 0.25 0.50

7 Conclusion and Future Work

Many interesting fractal patterns using quadratic
maps and IFS are naturally visualized by plots on
the complex plane, while a 3-D extension algorithm

are still aspiring goals and challenging tasks. This pa-
per propose an extension algorithm for rendering the
IFS escape-time behavior in three dimension without
inverting the IFS transformations which is computa-
tionally expensive, therefore reducing the complexity
time. The proposed algorithm has has fast computa-
tions and simple representation and due to its speed
of computation makes rendering rendering 3-D fractal
patterns reliable for interactive machines. Many inter-
esting problems regarding the quadratic map basins
for fractal remain open. In our future work we would
like to extend the proposed method to handle cases
where it doesn’t contain the infinity circle. In such
case it may be possible to gain further understanding
about the dynamics associated with fractal patterns
and would greatly increase the efficiency of compu-
tation and discovering more realistic general fractal
shapes.

References

[1] Alastair N., “IFS and interactive image synthe-
sis”, Computer Graphics Forum, Vol. 9, pp. 127-
137, 1990.

[2] Barnsely, M. F., “Fractals everywhere”, Aca-
demic Press, 1993. 　　

[3] Barnsely, M.F., “Recurrent iterated function sys-
tems”, Constructive Approximation Vol. 1, No.
1, 1989.

[4] Barnsely, M.F., and Demko S.G., “Iterated func-
tion systems and the global construction of Frac-
tals”, Proceedings of the Royal Society of London
Series A 399, pp. 243-275,1985.

[5] Canright,D., “Estimating the spatial extent of at-
tractors of iterated function systems”, Computers
and Graphics Vol.18, No.2, pp. 231-238,1989.

[6] Demko S., L. Hodges, and B. Naylor, ” Construc-
tion of Fractal Objects with Iterated Function
Systems”, Computer Graphics, Vol. 19, No. 3,
pp 271-278, SIGGRAPH’85 Proceedings.

[7] Foly D., Van Dam, Feiner S., and Hughes J.,
“Computer Graphics : Principles and Practice”
Addison-Wesley, 1990.

69

芸術科学会論文誌 Vol.2 No.1 pp.61-70

[8] Hart, J. C. “The object instancing paradigm for
linear fractal modeling”, Graphics interface ’92
proceedings, pp. 224-231,1992.

[9] Hart, J. C., and Sandin, “Ray tracing determin-
istic 3-D fractals”, Computer Graphics, Vol.23,
No.3, pp. 289-297, 1989.

[10] Hepting, D., P. Prusinkiewicz and D. Saupe,
“Rendering methods for iterated function sys-
tems”, Fractal in the fundamental and applied
sciences, New York, 1991.

[11] Hussein Karam, and Masayuki Nakajima, ”To-
wards Realistic Modeling and Rendering of 3-D
Escape-Time Deterministic Fractal Shape”, 7th

IEEE International Conference on Virtual Sys-
tems and Multimedia, VSMM’01, U.S.A., pp.
565-574, 2001.

[12] Hussein Karam and M. Nakajima “A novel 3-D
Visualization algorithm for rendering fractal pat-
terns”, The international Workshop on Advanced
Image technology, IWAIT’2002, Taiwan, pp. 49-
56, 2002.

[13] Hutchinson, J.E., “Fractals and self-similarity”,
Indiana Unversity Journal of Math. Vol. 30, No.
5, pp. 713-747, 1981.

[14] Jacquin, A.E., “Image Coding based on a fractal
theory of iterative contractive image transforma-
tions”, IEEE Transformations on image process-
ing Vol. 1, No.1, pp. 18-30, 1992.

[15] Mandelbrot B.B., “The fractal geometry of na-
ture”, W. H. Freeman, New York, 1982.

[16] Prusinkiewicz, P. and Hammel M., “Escape-
time visualization for language-restricted iterated
function systems”, Graphics interface ’92 pro-
ceedings, pp. 224-231,1992.

[17] Prusinkiewicz P., and Hanan J., L-systems : from
formalism to programming languages. In Lin-
denmayer Systems: Impacts on Theoretical Com-
puter Science, Computer Graphics and Develop-
mental Biology. Eds. G. Rozenberg and A. Salo-
maa. Springer-Verlag, Berlin, pp. 193-212, 1992.

[18] Prusinkiewicz, P. and Sandness G. “Koch curves
as attractors and repellers”, IEEE Computer

Graphics and applications Vol. 8, No.6,pp.26-
40,1988.

[19] Sprott J.C. “Automatic generation of general
quadratic map Basins”, Computer and Graphics,
Vol.19, No.2, pp 309-313,1995.

[20] Yagel, R, Cohen, D. and A. Kaufman, “Discrete
ray tracing”, IEEE Computer Graphics and Ap-
plications, Vol. 12, No. 5, pp. 19-28, 1992.

[21] G. Uday, and C. Virendra, “Fractals from z ←
zα + c in the complex plane”, Computer and
Graphics, Vol. 15, No. 3, pp. 441-449, 1991.

[22] K. Albert, “An abstract Mandelbrot algorithm
for Zn +c”, Fractals, Vol. 6, No. 1, pp.1-10, 1998.

[23] P. Lindstrom, D. Koller, W. Ribarsky, F. Hodges
and N. Faust , “Real-Time, Continuous Level of
Detail Rendering of Height Fields” , Proc. of SIG-
GRAPH’96, pp. 109-118, 1996.

[24] M. Monro, and F. Dudbridge “Rendering Algo-
rithms for Deterministic Fractals”, IEEE Com-
puter Graphics and Applications, January 1995.

[25] L. Kay, and T. Kajiya “Ray tracing complex
scenes”, Proc. of SIGGRAPH’86, Vol. 20, No. 4,
pp. 269-278, 1996.

[26] L. Joseph, Measure Theory, New York: Springer-
Verlag, 1994.

[27] Q. Zheng and R. Chellappa, “Estimation of illu-
mination direction, albedo, and shape from shad-
ing”, IEEE Transaction PAMI, 13(7), pp. 680-
702, 1991.

70

