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Abstract

In this paper, we propose a framework of “fractal deformation” using displacement vectors based
on “extended Iterated Shuffle Transformation (ext-IST)”. An ext-unit-IST is a one-to-one and
onto mapping that is extended from a unit-IST, which we have proposed, and is basically defined
on a code space. When the mapping is applied on a geometric space, a fractal-like repeated
structure, which is referred to as “local resemblance in space/scale directions”, is constructed on
the relationship between points on the domain and those on the range. By applying the mapping
to displacement vectors given on a geometric shape, the shape can be deformed in the fractal-like
repeated manner. This fractal deformation is easy to control by changing the displacement vectors
intuitively. In addition, a continuous transition between a continuous deformation and a fractal
deformation can be realized. We demonstrate how the fractal deformation technique produces
attractive results by showing various examples.

Key words: computer graphics (CG), geometric model, shape deformation, fractal, Iterated
Function System (IFS), attractor, Iterated Shuffle Transformation (IST)

1 Introduction

Shape deformation is a useful technique when we cre-
ate or modify the shape of an object. A lot of defor-
mation techniques have been proposed. For example,
free form deformation (FFD)[11, 16] is one of the most
familiar deformation techniques. In FFD, the shape
of a 3D object is deformed by deforming a 3D lat-
tice containing the object. Other useful techniques are
2D or 3D morphing and warping [11], which are one
of the most active topics in current computer graphics
research. The former produces a natural continuous
transition between two objects, and the latter deforms
a single object. Besides, as a kind of shape deforma-
tion, some fractal deformation techniques have been
proposed[4, 5, 12, 14, 15, 17, 18, 19]. These techniques
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treat fractal shapes and deform them (cf. Sec.2). Frac-
tal deformation techniques achieve completely different
deformation styles from usual continuous deformation
techniques such as FFD; a fractal deformation tech-
nique deforms a shape in the way that each subpart
of the shape in all scales is deformed recursively, while
a continuous deformation technique deforms the whole
shape continuously.

In this paper, we propose a new framework of frac-
tal deformation using displacement vectors based on
extended Iterated Shuffle Transformation (ext-IST). So
far we have proposed the idea of IST’s to define our
parametric surfaces[7, 8]. The IST’s consist of two
types: unit-IST’s and connected-IST’s. In this paper,
we focus on the unit-IST’s and extend them to propose
extended unit-IST’s (ext-unit-IST’s). A unit-IST is a
one-to-one and onto mapping that is basically defined
on a code space. The mapping can be applied on a ge-
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ometric space by mapping codes on the code space to
points on the geometric space. On the geometric space,
the unit-IST constructs a fractal-like repeated struc-
ture on the relationship between points on the domain
and those on the range. The property of this structure
is referred to as “local resemblance in space/scale direc-
tions”, which is considered to be the unification of “lo-
cality in space directions” in Euclidean geometry and
“self-similarity in scale directions” in fractal geometry.
We extend this original unit-IST to the ext-unit-IST
in order to realize wider variety of local resemblance
property. The fractal deformation technique proposed
in this paper deforms a geometric shape in the fractal-
like repeated manner based on this property. The pro-
posed technique can be applied to any geometric shape
if the points on the shape can be addressed appropri-
ately. Then, the shape is deformed by applying the ext-
unit-IST to displacement vectors given on the shape.
The deformation can be controlled easily by manipulat-
ing the displacement vectors intuitively. Moreover, the
ability of the ext-unit-IST realizes a continuous tran-
sition between a continuous deformation and a fractal
deformation.

In Sec.2, we describe the previous work related to
fractal deformation and state the difference between
other techniques and the proposed technique. In Sec.3,
we define ext-unit-IST’s. In Sec.4, we explain the local
resemblance. In Sec.5, we propose the fractal deforma-
tion technique based on ext-unit-IST’s. In Sec.6, we
describe the conclusion and future work.

2 Related Work

Some fractal deformation techniques that have been
thus far proposed are related to IFS theory , in which
a fractal shape is defined as an attractor obtained by
applying a set of contraction mappings infinitely (cf.
Sec.5.1). The techniques proposed in [4, 5, 15] treat IFS
attractors and deform them by changing their contrac-
tion mappings. The method described in [15] produces
a continuous transition between two IFS attractors by
directly interpolating the coefficients of their contrac-
tion mappings. The technique in [4] deforms an IFS
attractor by changing the fixed point and the strength
of attraction of the point of each contraction mapping.
The study in [5] proposed a method for maintaining the
connectedness of a deformed IFS attractor during the
deformation process. Besides, in [14], a fractal shape is
defined based on a recursive functional equation on the
complex plane and is analyzed topologically; using this
definition form, a fractal metamorphosis of the shape is
achieved by changing the functional equation continu-
ously. In [12], a simple procedural technique for creat-

ing a moving fractal tree was proposed; the shape of a
tree is first defined using a simple recursive procedure
that gives proper scale factors to the branch length,
and then is given motions by rotating the branches.
Here, fractal interpolation[1, 3, 10, 13, 20] is one of the
fields greatly related to fractal deformation. Among the
studies categorized into fractal interpolation, the stud-
ies in [17, 18, 19] proposed a method that combined
IFS and smooth interpolation techniques and achieved
fractal deformation. A set of basis functions of smooth
interpolation, such as Bézier interpolation, can be rep-
resented as the IFS attractor of a set of specific Markov
matrices. Based on this fact, using general Markov ma-
trices results in basis functions that interpolate control
points into a curve, a tensor product surface, or an IFS
attractor defined on a tensor product parameter space,
each of which is given fractal appearance. Controlling
the Markov matrices and control points achieves fractal
deformations of these shapes. In [7, 8], we proposed a
construction method of a fractal interpolation surface,
which was referred to as wrinkly surface (WR surface).
We first defined the transformation referred to as Iter-
ated Shuffle Transformation (IST) and then proposed
a method for interpolating control points having height
values into a WR surface using the IST. Changing the
positions and the height values of the control points re-
sults in giving a fractal deformation, which is referred
to as avalanche deformation, to the WR surface.

The techniques in [4, 5, 15] utilize the fundamen-
tal mechanism of an IFS attractor so well and deform
its shape globally. However, these techniques cannot
achieve a local deformation because each contraction
mapping of the IFS affects the whole shape. Similarly,
the technique in [14] can achieve only a global defor-
mation because of the global influence of a functional
equation. Moreover, these techniques are manipulated
by treating parameter values such as the coefficients
of contraction mappings or the strength of attraction
of fixed points, and a user cannot control a shape di-
rectly. Thus some shapes are difficult to deform intu-
itively. The technique in [12] is restricted to a moving
tree. The method in [17, 18, 19] is formulated quite
well mathematically. In this method, when a control
point is moved, the shape produced by interpolation
is deformed locally according to the movement of the
control point in the fractal manner determined by the
Markov matrices. However, it is not so easy to obtain
a desired deformation, because controlling the Markov
matrices is not intuitive and the movement of the con-
trol point affects both the position and the fractal ap-
pearance of the shape simultaneously. The method in
[7, 8] can deform the shape of a surface locally by ma-
nipulating the position and the height value of a control

– 135 –



芸術科学会論文誌 Vol. 1 No. 3 pp. 134 – 146

point separately in a intuitive way. However, the appli-
cation of this method is restricted to a surface shape.

In this paper, we expand the idea of [7, 8] to any geo-
metric shape that can be addressed appropriately. The
proposed technique is realized by separating an orig-
inal shape to deform and displacement vectors given
on the shape for a fractal deformation. This means
that an original shape and additional information for a
deformation are controlled separately in the proposed
technique whereas both of them are treated together in
a construction mechanism of a fractal shape in most of
other techniques. As a result, the proposed technique
enables easy local control of the fractal deformation
by manipulating the displacement vectors intuitively.
Moreover, the extension of unit-IST’s to ext-unit-IST’s
enhances the variety of the deformation and achieves
combining a continuous deformation and a fractal de-
formation continuously. The above effects distinctive
of the proposed technique cannot be realized by other
fractal deformation techniques.

3 Extended Unit Iterated Shuffle
Transformation

In this section, we define ext-unit-IST’s. First, let ΣL

denote the code space of L symbols, L ≥ 1, given by

ΣL = {α = α1α2α3 · · · | αj∈ ZL, j = 1, 2, 3, . . .}, (1)

where ZL = {0, 1, . . ., L−1}. The space ΣL is referred
to as unit code space of L symbols. For example, we can
take α = 24101 · · · as a code on Σ5. Then, we define
an ext-unit-IST on ΣL as follows.

Definition 1. For α ∈ ΣL, let DL
e−u : ΣL → ΣL for

integers kb≥ 0 and k ≥ kb+ 1 be the mapping given by

α=α1 · · ·αkbαkb+1 · · ·αk−1αkαk+1 · · · ,(2)
DL

e−u(kb, k, α)=α1 · · ·αkbαkαkb+1 · · ·αk−1αk+1 · · · .(3)
When kb = 0, symbols α1, · · · , αkb are omitted from the
equations.

Definition 2. An ext-unit-IST is defined as the
mapping DL

e−uni : ΣL → ΣL for integers kb and ke,
0 ≤ kb≤ ke, given by

DL
e−uni(kb, ke, α) (4)

=
{
α if kb= ke,
DL

e−u(kb, ke, D
L
e−uni(kb, ke− 1, α)) if kb< ke.

The introduction of variable kb is the extended point
from the original unit-IST we have proposed in [7, 8].
The original unit-IST is a special case of the ext-unit-
IST and is defined by setting kb = 0. In Sec.5.2, we will

explain how the introduction of kb works on geometric
shapes using the examples in Fig.3.

We can obtain the following theorems.

Theorem 1. For fixed kb and ke, the mapping DL
e−uni

is one-to-one and onto.
Proof. Consider DL

e−u. From Equations 2 and 3, if kb

and k are fixed, then DL
e−u is one-to-one and onto for

α ∈ ΣL. Now, consider DL
e−uni. From Eq.4, if kb= ke,

then this theorem is true. If kb < ke, then DL
e−uni is

defined as the composite mapping of a series of DL
e−u,

k = kb+ 1, . . . , ke− 1, ke, as follows:

DL
e−uni(kb, ke, α)

= DL
e−u(kb, ke, D

L
e−u(kb, ke− 1, DL

e−u(. . .

. . .DL
e−u(kb, kb+ 1, DL

e−uni(kb, kb, α)) . . . )))

= DL
e−u(kb, ke, D

L
e−u(kb, ke− 1, DL

e−u(. . .

. . .DL
e−u(kb, kb+ 1, α) . . .))).

Each mapping DL
e−u is one-to-one and onto, as proved

above. Therefore, the mapping DL
e−uni is also clearly

one-to-one and onto.

Theorem 2. If kb< ke, then the mapping DL
e−uni is

formulated by

α = (5)
α1 · · ·αkbαkb+1αkb+2 · · ·αke−1αkeαke+1αke+2 · · · ,

DL
e−uni(kb, ke, α) = (6)
α1 · · ·αkbαkeαke−1 · · ·αkb+2αkb+1αke+1αke+2 · · · .

When kb = 0, symbols α1, · · · , αkb are omitted from the
equations.
Proof. Equations 2, 3, and 4 complete the proof.

Theorem 3. For ∀α ∈ ΣL, if α′ = DL
e−uni(kb, ke, α)

then α = DL
e−uni(kb, ke, α

′).
Proof. The case of kb = ke is trivial from Eq.4. If
kb< ke, then Equations 5 and 6 complete the proof.

4 Local Resemblance in Space/Scale
Directions

We have two types of directions on a geometric space:
space directions and scale directions. The former are
the directions along which a point of view changes,
whereas the latter are the directions along which a
field of view changes. Based on these directions, we
can consider “locality in space directions” and “self-
similarity in scale directions”. The former is the prop-
erty that each local position on the space can be identi-
fied uniquely. The latter is the property that a similar
structure appears repeatedly by expansion or reduc-
tion. “Local resemblance in space/scale directions”,
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which we have proposed[7, 8], is the property that uni-
fies the “locality” and “self-similarity”. An ext-unit-
IST, as well as an original unit-IST, constructs this
property on a geometric space as shown in the next
section.

5 Fractal Deformation

In this section, we propose the fractal deformation tech-
nique using displacement vectors based on ext-unit-
IST’s and show various examples. We here demon-
strate only the cases of two-dimensional IFS attractors,
although arbitrary dimension and other kinds of shapes
can be essentially treated as well.

5.1 Addressing Points on Geometric Shape

In order to apply the proposed technique to a geometric
shape S, we have to define an ext-unit-IST working on
the shape. For this definition, first, we have to address
the points on the shape appropriately. Concretely, each
point s ∈ S has to be uniquely given a code α ∈ ΣL as
its address. This is achieved by a one-to-one and onto
mapping M : S → ΣL, which is referred to as address
mapping.

M (s) = α. (7)

In general, each point s on the shape S is given various
attributes such as a coordinate x that determines the
position of the point s in the space X in which the
shape S is defined. Here, for a convenient description,
let Fa : S → Atr be an attribute function that gives an
attribute value a ∈ Atr to a point s ∈ S.

Fa(s) = a. (8)

For example, a coordinate function Fx : S → X gives a
coordinate x ∈ X to a point s ∈ S.

Fx(s) = x. (9)

We are allowed to construct different address map-
pings M for a geometric shape S. For example, when
S is a D-dimensional unit cube, that is, Fx(S) = {x =
(x1, x2, . . . , xD) | xi ∈ [0, 1], i = 1, 2, . . . , D} ⊂ RD,
D ≥ 1, we can easily construct M as shown in Fig.1.
(a) and (b) are one-dimensional cases for L = 2 and 3.
(c) and (d) are two-dimensional cases for L = 4 and 9.
Each figure illustrates how the addresses α of points s
are determined by the mapping M , where the first and
second places of α given to each region of the unit cube
are shown. This addressing rule proceeds to infinity to
give α infinite places.

When S is an IFS attractor, we can use the idea de-
scribed in [3]. Iterated Function System (IFS)[2, 3, 6]
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Figure 1: Address mappings on unit cubes.
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Figure 2: Address mappings on IFS attractors.

is a well-known framework to generate fractals. A (hy-
perbolic) IFS consists of a complete metric space X and
a finite set of contraction mappings wi : X → X, i =
0, . . . , L− 1. Its notation is {X; w i, i = 0, . . . , L− 1}.
The set S ⊂ X is referred to as the attractor of the
IFS if S =

⋃L−1
i=0 wi(S). Each point s ∈ S is given an

address determined in terms of the sequence of map-
pings wi applied. Figure 2 shows the cases of Sierpinski
gaskets, L = 3, on R2. The gasket of (a) is obtained
as the attractor by the following IFS mappings:

w0(x) =
[

0.5 0
0 0.5

] [
x1

x2

]
+

[
0
0

]
,

w1(x) =
[

0.5 0
0 0.5

] [
x1

x2

]
+

[
0.5
0

]
,

w2(x) =
[

0.5 0
0 0.5

] [
x1

x2

]
+

[
0
0.5

]
,

and that of (b) is obtained by the following:

w0(x) =
[

0.55 0
0 0.55

] [
x1

x2

]
+

[
0
0

]
,

w1(x) =
[

0.55 0
0 0.55

] [
x1

x2

]
+

[
0.45
0

]
,

w2(x) =
[

0.55 0
0 0.55

] [
x1

x2

]
+

[
0

0.45

]
.

In each of (a) and (b), the two figures on the left show
the initial two application steps of L contraction map-

– 137 –



芸術科学会論文誌 Vol. 1 No. 3 pp. 134 – 146

pings from the initial triangleABC, where the numbers
show the addressing rule in the same way as Fig.1. The
figures on the right are the resultant attractors after in-
finite steps.

Strictly, in [3], a point can be given more than one
address. In [3], a “point” means its “coordinate”, and
addresses are directly given to the coordinates x ∈ X of
points on an attractor. Therefore, if the areas mapped
by its mappings wi overlap on X, then a point, that
is, a coordinate on the attractor can be given multiple
addresses, as shown in Fig.2 (b)†1. On the other hand,
in this paper, a point s and its coordinate x are dis-
tinguished. Every point to which a different sequence
of mappings wi is applied is considered as a different
point, even if the point overlaps with others. And its
coordinate is considered as an attribute of the point.

5.2 Ext-unit-IST on Geometric Shape

Using the mappings DL
e−uni in Eq.4 and M in Eq.7,

we can define an ext-unit-IST working on a geometric
shape S as the mapping FL

e−uni : S → S for integers kb

and ke given by

FL
e−uni(kb, ke, s) = M−1(DL

e−uni(kb, ke,M (s))). (10)

The mapping F L
e−uni is also one-to-one and onto.

Attribute values a given to points s by the function
Fa in Eq.8 are transformed on the shape S by the appli-
cation of the ext-unit-IST. Using Eq.10, the resultant
function FL

e−uni,a : S → Atr is expressed as follows.

FL
e−uni,a(kb, ke, s) = Fa(FL

e−uni

−1
(kb, ke, s)). (11)

Moreover, Eq.11 can be superposed as follows.

FL
S−e−uni,a(kb, ke, s) (12)

=
∑ke

k=kb
Wa(k, kb, ke, s)FL

e−uni,a(kb, k, s).

The weight function Wa, kb ≤ k ≤ ke, is defined by
using a ratio function δa(s) ≥ 0†2 as follows.

Wa(k, kb, ke, s) (13)

=




1− δa(s)

1− {δa(s)}ke−kb+1
{δa(s)}k−kb if δa(s) �= 1,

1
ke − kb + 1

if δa(s) = 1.

Equation 13 satisfies
∑ke

k=kb
Wa(k, kb, ke, s) ≡ 1. The

weight function and ratio function defined above are
given a point s as an argument. This means that the

†1Actually, even in (a), the points that joint triangles have
multiple addresses when infinite places of α are considered[3].

†2In [7, 8], this range was defined as 0 < δ a(s) < 1.

values of these functions are variable for different points
s on the shape S.

Figure 3 shows examples for demonstrating how ext-
unit-IST’s work on geometric shapes. These exam-
ples help readers understand the difference between
the transformation patterns caused by different pairs
of kb and ke in Eq.10. The geometric shape and ap-
plied address mapping of (a) are Fig.1 (c), and those
of (b) are Fig.2 (a). The points s on each shape are
given color values c = (red, green, blue) ∈ C by a color
function Fc : S → C as attribute values a. In each
of (a) and (b) in Fig.3, the image in the row labeled
kb and the column labeled ke is colored by FL

e−uni,c ,
which is the function obtained by replacing a with c
in Eq.11, given the values kb and ke. Similarly, each
image in the column labeled “superposition” is colored
by FL

S−e−uni,c , which is obtained using Eq.12, given kb

of the row, ke = 5, and the ratio function δc(s) = 1
(constant for all s). We find that the color changes
in these images caused by the ext-unit-IST’s construct
fractal-like repeated structures. Here, we observe how
different values of ke work. In each of (a) and (b),
for each kb, the construction of the repeated structure
proceeds in the scale direction by scattering the colors
over the shape as ke increases. That is, ke works for
controlling the level of detail of the repeated structure.
Moreover, even though ke increases, the upper left part
on the shape remains redder, the lower right part re-
mains bluer, and the lower left part or upper right part
remains greener than other parts. That is, the pro-
portion of red, blue, and green depends on the posi-
tion in the space direction. The “superposition” case
shows this situation more clearly. The property de-
scribed above is the “local resemblance in space/scale
directions” constructed by the ext-unit-IST’s. Next, we
observe how different values of kb work. As described
in Sec.3, the introduction of kb is the extended point
from original unit-IST’s to ext-unit-IST’s proposed in
this paper. In each of (a) and (b), the case of kb = 0
shows an original unit-IST. When comparing the cases
of kb = 0, 1, and 2, we find that the scattering of the
colors is localized within smaller regions as kb becomes
greater. Actually, kb works for restricting the extent
within which a point s can be transformed by Eq.10.
In Fig.3, for each kb, the leftmost image shows that the
transformation of a point s is restricted within the re-
gion that is enclosed by a white square or triangle and
includes the point. This property realized by kb is an
important feature distinctive of ext-unit-IST’s and can-
not be achieved by original unit-IST’s. In particular,
this property is indispensable for realizing a continu-
ous transition between a continuous deformation and a
fractal deformation described in Sec.5.4.
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(a)

ke=2 ke=3 ke=4 ke=5ke=1 superposition

kb=0

kb=1

kb=2

ke=0

(b)

ke=2 ke=3 ke=4 ke=5ke=1 superposition

kb=0

kb=1

kb=2

ke=0

Figure 3: Examples of ext-unit-IST’s on geometric shapes. (a) A unit cube. (b) A Sierpinski gasket.

5.3 Fractal Deformation Based on Ext-unit-
IST

The fractal deformation proposed in this paper is
achieved by giving displacement vectors to the points
on a geometric shape to deform and applying an ext-
unit-IST to the displacement vectors. This is formal-
ized as follows.

First, let Fx in Eq.9 be the coordinate function of a
geometric shape S to deform. Actually, the shape S
is concretely determined on the coordinate space X by
defining the function Fx. Then, each point s on the
shape S is given a displacement vector v ∈ X. When
the displacement vector is considered to be an attribute
value, the operation of giving displacement vectors v

to the points s is represented as a displacement vector
function Fv : S → X given by

Fv(s) = v. (14)

When the displacement vectors varies over time t ∈ T ,
Eq.14 is represented as the function Fv : S, T → X
given by

Fv(s, t) = v. (15)

This function form is used for producing a deformation
over time t. In the following, for convenience, we con-
sider only functions Fv that are continuous on both S
and T . Here, if the functions Fx and Fv are directly
added, the coordinate of a point s on the space X at
time t is obtained by the function Px,v : S, T → X
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given by

Px,v(s, t) = Fx(s) + Fv(s, t). (16)

In this case, the shape S is deformed continuously over
time t because the function Fv is continuous on both
S and T as described above. In this paper, we re-
fer to this deformation as continuous deformation in
comparison with the term “fractal deformation”. On
the other hand, using Eq.11†3, applying an ext-unit-
IST to the function Fv results in the fractal deforma-
tion proposed in this paper. In this case, the coordi-
nate of a point s at time t is obtained by the function
PL

e−uni,x,v : S, T → X given by

PL
e−uni,x,v(kb, ke, s, t)

= Fx(s) + Fv(FL
e−uni

−1
(kb, ke, s), t)

= Fx(s) + FL
e−uni,v(kb, ke, s, t). (17)

In Eq.17, the function F L
e−uni rearranges the displace-

ment vectors given by Fv on the shape S in a local re-
semblance manner, as shown in Sec.5.2. This results in
a fractal deformation. Besides, using Eq.12, the super-
posed case is obtained by the function PL

S−e−uni,x,v :
S, T → X given by

PL
S−e−uni,x,v(kb, ke, s, t)

= Fx(s) +
∑ke

k=kb
Wv(k, kb, ke, s)FL

e−uni,v(kb, k, s, t)

= Fx(s) + FL
S−e−uni,v(kb, ke, s, t). (18)

The weight function Wv for displacement vectors v is
obtained using a ratio function δv(s) for v and Eq.13.

We show some examples of the fractal deformation
in the following. These examples are two-dimensional
IFS attractors defined on R2. Therefore, the equations
above are treated by considering that X = R2, x =
(x, y) ∈ R2, and v = (vx, vy) ∈ R2.

(The animations included in the supplemen-
tary works help readers understand the follow-
ing explanation.)

(1) Examples of a Sierpinski Gasket (Fig.4)
Figure 4 shows examples for explaining how the frac-

tal deformation technique works on a Sierpinski gasket.
(See the animations of Figure 4 in the supple-
mentary works.) (A) is an example of continuous
deformation obtained by Eq.16, while (B) to (H) are
examples of fractal deformation obtained by Eq.18. (B)
to (H) are given different pairs of kb and δv, although
all of them are given the same ke = 9 that determines

†3Time t is considered in Eq.17, although Eq.11 does not have
t. The same applies to Equations 18 and 12.

the minimum scale of the deformations. In each case
from (A) to (H), (a) is the original Sierpinski gasket by
setting Fv(s, t) = (0, 0) for all s at t = t0 = 0, while
(b) and (c) are deformed gaskets by Fv(s, t) at t = t1
and t2 (t0 < t1 < t2). All the cases from (A) to (H)
are given the same function Fv. Technically, in these
examples, the function Fv was defined by giving dis-
placement vectors changing over time t to 4×4 control
points constituting a control mesh placed over the gas-
ket and applying two-dimensional Bézier interpolation
of degree 3 to the vectors. (The functions Fv used for
Figures 5 and 6 were also defined using the same tech-
nique.) This means that actually the function Fv was
defined as not Fv(s, t) but Fv(x, t) for x ∈ Y ⊂ X,
where Y is the square region covered with the Bézier
interpolation on X. Then, the coordinate x = Fx(s)
of each point s on the gasket was assigned the dis-
placement vector v = Fv(x, t). The movement of the
white grid drawn over the gasket shown in (a), (b), and
(c) represents the resultant function Fv changing over
time t. The movements of the grid points of this white
grid correspond to Fv(x, t) obtained at 11×11 points x
placed on Y at equal parameter intervals. The position
of each grid point indicates x + Fv(x, t) at t.

Comparing (A) and (B) shows us the fundamental
difference between a continuous deformation and a frac-
tal deformation. The continuous deformation (A) de-
forms the whole shape of the gasket continuously, while
the fractal deformation (B) deforms the gasket in the
way that each subpart of the gasket in all scales is
deformed recursively (see the animations in the sup-
plementary works carefully). Here, for detailed analy-
ses, we focus on the deformed shape of (b) in (A) and
that in (B). In (A)-(b), when the midpoint of the hy-
potenuse of the gasket is lifted up, the lifting is prop-
agated continuously around the lifted point and pro-
duces the continuous deformation. The neighbourhood
of the lifted point is deformed greater, and the regions
far from the point are less deformed. The region of
the lower left corner is hardly deformed. On the other
hand, in (B)-(b), the lifting is scattered all over the
gasket in a fractal-like repeated manner. We find that
every triangle in all regions, even in the lower left cor-
ner, and in all scales is deformed although the triangles
near the lifted point are still deformed greater than
those in far regions. This deformation manner indi-
cates the property of local resemblance (cf. Sections 4
and 5.2). The comparison between (A) and (B) above
shows that the two deformations have completely dif-
ferent deformation styles each other. In general, other
fractal deformation techniques such as those described
in Sec.2 also deform shapes in such kinds of recursive
manners; such deformations cannnot be achieved using
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(a) (b) (c)

(A)  continuous deformation

(b) (c)(a)

v(G)

(b) (c)(a)

v(F)

(b) (c)(a)

v(B)

(b) (c)(a)

v(C)

(b) (c)(a)

v(E)

(b) (c)(a)

v(D)

(b)(a)

v(H) 0.50 --- 0.75

(c)

Figure 4: Fractal deformations of a Sierpinski gasket. ke = 9.
# The animations of this figure are in the supplementary works.

continuous deformation techniques such as FFD. How-
ever, the proposed technique provides easy control to
the deformation by changing the displacement vector
function intuitively, while other techniques are not so
easy to manipulate for the reasons described in Sec.2.
Concretely, if using the above-mentioned technique of
defining a displacement vector function, the fractal de-
formation can be easily controlled by manipulating the
displacement vectors given to the 4 × 4 control points
intuitively.

The examples from (B) to (F) show us the influence
of different values of kb on the deformations. The effect
produced by kb is distinctive of the proposed technique
and is not found in other previous techniques. In the
examples, the change of kb changes the proportion of
the deformations of the triangles in all regions and all
scales inside the gasket (see the animations in the sup-

plementary works carefully). For example, when con-
sidering the deformed shapes of (b) in (B) to (F), as kb

increases from 0 to 9 (= ke), the deformations of the tri-
angles near the lifted point get to be greater than those
in far regions. This means that the scattering of the
lifting gets to be localized into each original position
on the gasket. When kb reaches ke, this localization
converges; the fractal deformations by Eq.18 become
the continuous deformation by Eq.16. This can be eas-
ily understood by Eq.4 in Definition 2; an ext-unit-IST
gives no change to α if kb = ke. Actually, we find that
the deformed gasket in (F) is the same as that in (A).
This fact means that ext-unit-IST’s enable a continu-
ous transition between a continuous deformation and
a fractal deformation by changing kb continuously (cf.
Sec.5.4).

The examples of (B), (G), and (H) show us the in-
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fluence of different ratio functions δv. The function
δv controls the “roughness” or “smoothness” of a de-
formed shape. (B) and (G) are given δv(s) = 0.75
and 0.50, constant for all points s on the gasket, re-
spectively. Comparing these two cases shows that the
deformed shape becomes rougher as δv(s) becomes
greater. On the other hand, (H) is given δv(s) that
has different values at different points s: given 0.50 on
the lower left part of the gasket, 0.67 on the lower right
part, and 0.75 on the upper left part. In this case, the
deformed shape has different roughness on each part.

In fact, using Eq.17 or Eq.18 as it is, the resultant
deformed shape comes apart because an ext-unit-IST
on a geometric space is essentially a discontinuous func-
tion. For example, the color figures in Fig.3 reveal the
discontinuity as the recursively partitioned square or
triangle regions. For avoiding the discontinuity, when
we use Eq.17 or Eq.18, we take the following strategy:
1) average the displacement vectors, which are obtained
by FL

e−uni,v , of all the points s in each continuous re-
gion that is not separated by the ext-unit-IST, 2) give
each point s in the whole shape S a displacement vec-
tor obtained by interpolating the averaged vectors in
1) using Delaunay triangulation.

(2) Examples of a Black Spleenwort Fern (Fig.5)
Figure 5 shows another example of IFS attractor,

a Black Spleenwort fern, L = 4, on R2. (See the
animations of Figure 5 in the supplementary
works.) This attractor is obtained by the following
IFS mappings:

w0(x) =
[

0.85 0.04
−0.04 0.85

] [
x1

x2

]
+

[
0
1.6

]
,

w1(x) =
[

0.2 −0.26
0.23 0.22

] [
x1

x2

]
+

[
0
1.6

]
,

w2(x) =
[ −0.15 0.28

0.26 0.24

] [
x1

x2

]
+

[
0

0.44

]
,

w3(x) =
[

0 0
0 0.16

] [
x1

x2

]
+

[
0
0

]
.

(X) indicates its addressing rule. (A) is an example of
continuous deformation by Eq.16. (B) to (E) are ex-
amples of fractal deformation by Eq.18 given different
pairs of kb and δv, and the same ke= 6. (A) to (E) are
given the same displacement vector function Fv. (B-1)
to (B-3) are magnified images of (B); the magnified
parts are enclosed with red, blue, and green rectangles.

In the fractal deformations of this model, in or-
der to give a proper sway direction to each part of
the fern, the displacement vector given a point s on
the fern is rotated properly; the displacement vector
FL

e−uni,v(kb, k, s, t) in Eq.18 given on a point s is ro-

tated by the rotation factors of the IFS mappings from
wαkb+1 to wαk , where α = M (s) by Eq.7. As a re-
sult of this rotation as well as the scattering of the
displacement vectors by the ext-unit-IST’s, in (B) to
(E), every branch or leaf element in all regions and all
scales is deformed in its own manner having a proper
sway direction. The displacement vector function Fv

given to this model originally sways the upper part of
the fern from side to side, as shown in (A). However,
when observing (B), (B-1), (B-2), and (B-3), we find
that the branch or leaf elements in each subpart of the
fern are swaying to the right and left of the axis of the
subpart as if the subpart were a single fern in itself
(see the animations in the supplementary works care-
fully). This sway is not identical with the motion of
the white grid representing the original motion of Fv.
The important fact is that the same situation above is
observed in every subpart of the fern in all regions and
all scales recursively. In comparison, in the continuous
deformation (A), the deformation of the whole shape
is identical with the motion of the white grid; this re-
sults in a rigid impression of the whole shape. The
above distinctive deformation manner of the proposed
technique cannot be realized by other previous fractal
deformation techniques as well as usual continuous de-
formation techniques. Similarly to Fig.4, manipulating
Fv intuitively achieves easy control of the deformation.

The examples (B) to (E) show the effect caused by
different pairs of kb and δv. As described above, the
displacement vector function Fv originally sways the
upper part of the fern from side to side, as shown in
(A). When kb = 0 in (B), the sway is scattered all over
the fern, and even the lowest part sways widely. As kb

increases from (B) to (E), the sway of the lower part
decreases and that of the upper part increases. When
kb reaches 6 (= ke), the fractal deformations converge
to the continuous deformation of (A). In the same way
as Fig.4, this is caused by the fact that the value of kb

controls the extent of the scattering of the displacement
vectors given by Fv. In this model, the ratio function
δv is given smaller value as kb increases in order to
make the deformation gentle.

(3) Examples of a Twin-Dragon (Fig.6)
Figure 6 shows examples of a Twin-Dragon, L = 2,

on R2. (See the animations of Figure 6 in the
supplementary works.) This attractor is obtained
by the following IFS mappings:

w0(x) =
[

0.5 0.5
−0.5 0.5

] [
x1

x2

]
+

[ −0.5
0.375

]
,

w1(x) =
[

0.5 0.5
−0.5 0.5

] [
x1

x2

]
+

[
0.5

0.625

]
.
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(X) indicates its addressing rule. (A) is an example of
continuous deformation by Eq.16. (B) to (E) are ex-
amples of fractal deformation by Eq.18 given different
values of kb, and the same ke = 8 and δv(s) = 1 for
all points s on the dragon. (A) to (E) are given the
same displacement vector function Fv. (B-1) to (B-3)
are magnified images of (B); the magnified parts are
enclosed with red, black, and green rectangles. (Y)
is the color function Fc (cf. Sec.5.2). This function
was defined in the same way as the displacement vec-
tor function Fv by giving color values c to the 4 × 4
control points and interpolating them. All of (A) to
(E) are colored by applying Eq.12 to this color func-
tion with kb = 0, ke = 8, and δc(s) = 1 for all s. This
makes it easy to understand the fractal motion inside
the dragon described below.

The displacement vector function Fv originally af-
fects the dragon to draw its lower right part to the
lower right direction, as shown in (A). In the fractal
deformations (B) to (E), the displacement vector given
a point s on the dragon by the function Fv is rotated
by the rotation factors of the IFS mappings in the same
way as Fig.5. Thus each spiral tip in all regions and
all scales rounds inside and shrinks individually. The
magnified images (B-1) to (B-3) show that each inside
part as well as the outline of the dragon is deformed
individually in such a manner (see the animations in
the supplementary works carefully). This deformation
is distinctive of the proposed technique.

The examples (B) to (E) show the effect caused by
different kb. When kb is small, the drawing of the lower
right part by Fv gives great effect even on the opposite
upper left part. The increase of kb makes this effect
localized to the neighbourhood of the drawn part; the
lower right part is more deformed while the upper left
part is less deformed. Then, the spiral deformation
effect described above is weakened.

5.4 Continuous Transition between Continu-
ous and Fractal Deformations

The function FL
e−uni,a in Eq.11 can be easily extended

for non-integers k∗b and k∗e , 0 ≤ k∗b ≤ k∗e , by

F ∗L
e−uni, a(k

∗
b , k

∗
e, s) = (19)

r̄br̄eF
L
e−uni,a(kb, ke, s) + r̄breF

L
e−uni,a(kb, k

′
e, s)

+rbr̄eF
L
e−uni,a(k

′
b, ke, s) + rbreF

L
e−uni,a(k

′
b, k

′
e, s).

In Eq.19, kb and rb are the integral part and decimal
part of k∗b ; k

′
b = kb + 1; r̄b = 1 − rb. The same nota-

tions are given for k∗e . Equation 19 realizes perfectly
a continuous transition between a continuous deforma-
tion and a fractal deformation. This technique can be
also applied to the case of Eq.12.

(The supplementary works include the anima-
tion of an example of continuous transition in
the case of Figure 4.)

6 Conclusion and Future Work

In this paper, we have proposed the fractal deforma-
tion technique using displacement vectors based on ext-
unit-IST’s. Using this technique, a geometric shape
can be deformed in a fractal-like repeated manner by
controlling a displacement vector function intuitively.
Besides, this technique realizes various levels of frac-
tal deformations and achieves a continuous transition
between a continuous deformation and a fractal defor-
mation. Although we have demonstrated only the cases
of two-dimensional IFS attractors, arbitrary dimension
and other kinds of shapes can be treated if the shapes
can be given proper address mappings. However, actu-
ally, when considering the application of this technique
to actual various object shapes, it is hard to find proper
address mappings in most cases. In addition, in order
to realize desired deformations for various complicated
shapes, a more flexible control mechanism is needed.
These are open problems to solve. As one application
theme, we are currently planning to apply this tech-
nique to image deformation using real pictures. Be-
sides, we are pursuing other application themes of ext-
unit-IST’s and the proposition of extended connected-
IST’s.
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Figure 5: Fractal deformations of a Black Spleenwort fern. ke = 6.
# The animations of this figure are in the supplementary works.
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Figure 6: Fractal deformations of a Twin-Dragon. ke = 8. δv(s) = 1.
# The animations of this figure are in the supplementary works.
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