
The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

Iterative Refinement of Alpha Matte using Binary Classifier

Zixiang Lu1) Tadahiro Fujimoto1)

1) Graduate School of Engineering, Iwate University

luzixiang (at) cg.cis.iwate-u.ac.jp

fujimoto (at) cis.iwate-u.ac.jp

Abstract
Image matting is a technique used to extract a foreground object from an input color image by estimating its opacity mask,
which is called an alpha matte. Many previous methods have estimated a poor-quality alpha matte when a foreground
object and its background have similar colors. To overcome this problem, we treat an image matting problem as a binary
classification problem to classify unknown pixels into foreground and background pixels. In this study, we propose a
learning-based matting method based on binary classification. In our method, a binary alpha matte is first obtained by
a binary classifier. The binary alpha matte is then iteratively refined to a high-quality alpha matte by repeat use of the
classifier. Although we used a support vector machine classifier and the closed-form matting method, an important merit
of our method is that it provides a general mechanism to refine an alpha matte by combining various binary classifiers
and matting methods. The excellent performance of our method was revealed in several experiments, especially, for input
images having similar foreground and background colors as well as objects with small holes.

– 207 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

1 Introduction

Image matting is a fundamental and useful technique for
image and video editing. From a foreground region sep-
arated from a background region on a given input color
image, image matting extracts the opacity mask, which
is called an alpha matte, as well as foreground and back-
ground colors. Image matting is based on the following
equation.

Ii = αiF i + (1− αi)Bi. (1)

The vectors Ii, F i, and Bi represent the colors of an im-
age color, foreground, and background of a pixel pi in a
given input color image. Each color is a three-dimensional
(3D) vector with red (R), green (G), and blue (B) color
values. The scalar αi ∈ [0, 1] is an opacity value, alpha.
If αi = 1 or 0, the pixel pi is a definite foreground pixel
or a definite background pixel respectively. Otherwise, the
pixel pi is a mixed pixel. An accurate estimation of αi,
F i, and Bi of mixed pixels pi is required to separate fore-
ground and background regions fully. Eq.(1) consists of
three linear equations with three known variables R, G,
B in Ii and seven unknown variables αi and R, G, B in
F i and Bi. This means that a matting problem is in-
herently ill-posed and does not have a unique solution to
satisfy Eq.(1). Thus, estimating a likely solution of αi,
F i, and Bi for each pixel pi according to an input image
is essential.

Many matting methods have been proposed. Smith and
Blinn [1] developed a blue screen matting method, that
has been widely used in film production. In this method,
foreground objects are photographed against a background
with known colors to solve Eq.(1) easily by reducing un-
known variables. Various methods have been developed to
extract foreground objects on a natural image without a
known background. These methods use either one or both
of the two kinds of interfaces to offer clues to solving a
matting problem. These interfaces are known as trimap-
based and scribble-based. A trimap-based interface uses
a trimap given by a user, and divides the entire image re-
gion into three subregions: a definite foreground, a definite
background , and an unknown region, as shown in Figure
1(b). A definite foreground or background region has only
definite foreground or background pixels, colors of which
are used as clues. An unknown region has unknown pixels
to estimate. These are not only mixed pixels but also def-
inite foreground or background pixels. In a scribble-based
interface, which was first proposed by Wang and Cohen
[2], a user gives some foreground and background scribbles
on an input image. These scribbles contain a few defi-
nite foreground and background pixels, respectively. The
colors of these pixels are used to estimate alphas and the
foreground or background colors of the remaining pixels.
In addition, a matting method generally uses one of the
following three approaches: sampling-based, propagation-
based, and hybrid approaches [3]. Bayesian matting [4] is
a well-known sampling-based method that is based on the
maximum posteriori estimation in a Bayesian framework.
Poisson matting [5] and closed-form matting (CF) [6] are
propagation-based methods. Poisson matting obtains an

alpha matte by solving a Poisson equation of alphas and
image color gradients. Closed-form matting uses a mat-
ting Laplacian matrix based on a color line assumption.
Most recent methods use hybrid approaches that combine
sampling-based and propagation-based approaches such as
robust color sampling matting [7], shared sampling mat-
ting [8], and large kernel matting [9]. In addition, some
methods use learning-based approaches, such as learning
based digital matting [10], support vector machine (SVM)-
based matting [11], and support vector regression (SVR)-
based matting [12]. In addition, additional excellent meth-
ods recently been developed, e.g., global sampling mat-
ting [13], KNN matting [14], local and nonlocal smooth-
ness prior (LNSP) matting [15], color clustering matting
(CCM) [16], and comprehensive sampling (CS) matting
[17].

In this study, we propose a matting method founded on
a learning-based approach. As described in Section 2.3
later, our method is completely different from the above-
mentioned learning based methods [10] [11] [12]. The key
idea of our method is the iterative refinement of an alpha
matte. In our method, an alpha matte obtained by a basic
matting method we employ is refined iteratively using a
binary classifier that intelligently classifies foreground and
background pixels. The alpha matte gets better gradu-
ally as the iteration proceeds. We use the support vector
machine (SVM) [18] as a binary classifier in a manner
different from the SVM-based matting [11], although we
can use another binary classifier. The SVM classifier is a
well-known excellent binary classifier that reliably classi-
fies foreground and background pixels even if their colors
are similar. In addition, we employ the closed-form mat-
ting (CF) method [6] as a basic matting method. Some
methods, such as those in [8], [12], [13] and [17], use the
CF method in post-processing to improve an obtained al-
pha matte. This usage of the CF method greatly inspired
us to invent the idea of our method, although we can em-
ploy another method as our basic matting method. The
iterative refinement mechanism proposed in this study is
not limited to the combination of the SVM and the CF
method. An important merit of our method is to provide
a general mechanism to improve an alpha matte by com-
bining various binary classifiers and matting methods.

2 Related work

2.1 Closed-form matting

Levin et al. proposed the CF method [6]. Its main assump-
tion is the color line model: foreground or background col-
ors in a small window lie on a single line in RGB color
space. Based on this assumption, the alpha αi of a pixel
pi in a small window is represented as a 4D linear model
of αi ≈ aT Ii + b using its color Ii and constants a and b.
By minimizing the cost function J(α,a, b) defined using
the 4D linear model, a quadratic function of α, which is a
vector of the alphas αi of all pixels pi, is obtained.

J(α) = min
a,b

J(α,a, b) = αTLα. (2)

– 208 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

The matrix L is called matting Laplacian, which has been
widely used in many matting methods. In addition, its
elements are shown as follows.

Lij =
∑

k|(i,j)∈wk

(δij −
1

|wk|
(1 + (Ii − µk)

(Σk +
ε

|wk|
I3)−1(Ij − µk)))

, (3)

where δij is the Kronecker delta, µk and Σk are the mean
and covariance matrix of the colors in window wk, |wk|
is the number of pixels in wk, and I3 is a 3× 3 identity
matrix.

To estimate an alpha matte to satisfy a constraint by
a user for example, a trimap, the CF method solves the
optimization problem.

α = argminα α
TLα+ λ(α− β)TDs(α− β), (4)

where λ is a large number, Ds is a diagonal matrix whose
diagonal elements are 1 for constrained pixels and 0 for
others, and β is a vector that contains specified alphas for
the constrained pixels and 0 for others.

After we estimate alphas, reconstructing foreground and
background colors is typically necessary. However, this
remains an ill-posed problem. Levin et al. proposed a
reconstruction method to solve this problem using the 4D
linear model, given as:

min
∑
i∈I

∑
c

(αiF
c
i + (1− αi)Bci − Ici)2

+|αix |((F
c
ix)2 + (Bcix)2)

+|αiy |((F
c
iy)2 + (Bciy)2),

(5)

where F cix , F ciy , Bcix , and Bciy are the x and y derivatives
of F c and Bc, and αix and αiy are the matte derivatives.
For a fixed α, the cost function (5) is quadratic and its
minimum may be found by solving a sparse set for linear
equations. In our method, we use the CF and reconstruc-
tion methods iteratively to refine an alpha matte.

2.2 Support vector machine

SVM [18] provides an excellent binary classifier based on
the structural risk minimization principle. An SVM bi-
nary classifier separates samples into two classes according
to their features. Its basic concept is to locate the optimal
separating hyperplane to separate samples in the feature
space so that the hyperplane has the maximal margin be-
tween the nearest samples in both classes.

The SVM classifier is first trained by means of a set
of training data {(Xi, yi)} of samples {si}, i = 1, . . . ,M ,
where Xi ∈ Rn is a feature vector and yi ∈ {1,−1} is a
binary class label. To use the “kernel trick” technique, the
feature vectors Xi are mapped to a higher dimensional
space by a function φ. The function is used to define a
kernel function K(Xi,Xj) = φ(Xi)

Tφ(Xj), which is in
turn used to define a classification function to realize the
optimal hyperplane in the space. Many kernel functions
have been proposed such as linear, polynomial, radial basis

function [19], and sigmoid. In our method, we use the
Gaussian radial basis function kernel.

K(Xi,Xj) = e
(−
‖Xi−Xj‖

2

2σ2
)
, (6)

where σ is a kernel parameter. After training using the
training data, we obtain a classification function that can
classify new samples using feature vectors given as a test-
ing data. We used the LIBSVM [20] to develop our soft-
ware.

2.3 Learning-based matting

Zheng et al. solved an alpha matting problem by treating
it as a semi-supervised learning task in machine learning
[10]. They proposed local and global learning based ap-
proaches. In the local learning based approach, it is as-
sumed that the alpha of a pixel is represented not only
by a linear combination of the alphas of its neighboring
pixels but also by a linear combination of its color com-
ponents. Based on the assumption in a local region (a 7
× 7 local patch), by using the ridge regression technique,
a linear alpha-color local model is considered to estimate
the alphas of unknown pixels by a coefficient matrix ob-
tained from image colors of all pixels and the alphas of
known pixels. The linear model is extended to a nonlin-
ear model by the kernel trick. Then, the local learning
based approach is extended to the global one by select-
ing for each unknown pixel its nearby known foreground
and background pixels by the shortest Euclidean distances
instead of its neighboring pixels.

Hosaka et al. proposed an optimization method to es-
timate an alpha matte by using the support vector ma-
chine (SVM) [11]. They defined a cost function to mini-
mize on the basis of a Markov random field (MRF). The
cost function consists of a matting term, a smoothing
term, and a discrimination term. The matting term is
defined for the fidelity to the matting equation on single
pixels, and the smoothing term is defined for the local
smoothness between neighboring pixels. The discrimina-
tion term is defined by using the SVM to discriminate be-
tween foreground and background pixels. The SVM uses
a 15-dimensional feature vector consisting of the RGB col-
ors of each pixel and its four nearest neighbors. The cost
function is minimized by the belief propagation to estimate
the alphas of unknown pixels and by a sampling method
to estimate their foreground and background colors.

Zhang et al. solved an alpha matting problem as a su-
pervised regression problem by using the support vector
regression (SVR) [12]. In their method, first, an unknown
region is segmented into small circular or fan-shaped pieces
by a predefined pixel length r (they set r = 30 pixels), and
the pieces are given an order to process according to their
distances to definite foreground and background regions.
In the process of each piece, first, candidate training sam-
ples are selected from definite foreground and background
pixels and previously estimated pixels around the piece.
Then, by using the similarity distance between two pix-
els defined by their pixel coordinates and feature vectors,
m most similar and m most dissimilar pixels (they set

– 209 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

m = 3) among the candidate training samples are selected
for every pixel in the piece as training samples for SVR to
estimate the alphas of the pixels in the piece.

Our method proposed in this study is completely differ-
ent from the above learning-based methods, although our
method also takes a learning-based approach. The dis-
tinctive feature of our method is to refine an alpha matte
iteratively by using a binary classifier which classifies fore-
ground and background colors in order to finally obtain a
high-quality matte. The binary classifier is first used to
obtain an initial alpha matte in which the alpha of each
unknown pixel is either 0 or 1. Then, the classifier is used
in each iteration step to determine the confidence values of
the current estimated alphas of the unknown pixels. The
confidence values are used for the CF method, which is
summarized in Section 2.1, to estimate better alphas. In
this study, we use the SVM, which is summarized in Sec-
tion 2.2, as a binary classifier.

3 Iterative refinement of alpha matte

3.1 Outline

Examples obtained by our method are shown in Figure 1
in which the binary classification (c) and final alpha matte
(d) are obtained from the input image (a) and trimap (b).
Our iterative refinement method estimates alphas of un-
known pixels in an unknown region of a trimap according
to the following three stages.

(1) Training of binary classifier

A binary classifier to classify unknown pixels into fore-
ground and background pixels is trained by a set of train-
ing data obtained from an input color image and its
trimap. We use SVM as a binary classifier, and other
classifiers also can be used.

(2) Initial alpha estimation

By using the trained SVM classifier, initial alphas of un-
known pixels are estimated.
Binary classification: All unknown pixels are classified
into foreground and background pixels by the SVM classi-
fier.
Confidence evaluation: Confidence values of the un-
known pixels for the classification result are evaluated.
Alpha estimation: Using the confidence values, initial
alphas of the unknown pixels are estimated by Eq.(12).

(3) Iterative refinement of alpha estimation

By starting with the initial alphas, alphas of the un-
known pixels are refined by iterating the following three
steps until the refinement converges.
Foreground and background estimation: Foreground
and background colors of the unknown pixels are estimated
from the latest estimated alphas.
Confidence evaluation: Confidence values of the esti-
mated foreground and background colors for the unknown
pixels are evaluated using the SVM classifier.
Alpha estimation: Using the confidence values, new al-
phas of the unknown pixels are estimated by Eq.(16).

The details are described as follows.

3.2 Training of binary classifier

We use an SVM classifier with a Gaussian kernel [18] to
classify unknown pixels into foreground and background
pixels. The classifier must be given appropriate feature
vectors of pixels as training data in advance and testing
data in application. We use the feature vectors described
below and train the classifier as follows.

3.2.1 Feature vector

Many traditional segmentation methods distinguish fore-
ground from background pixels on an input color image
by using an RGB-color vector of each pixel as its feature
vector. The RGB-color vector is a 3D vector. However,
in some cases, such a feature vector does not contain ad-
equate information for a high-quality segmentation result.
In particular, distinguishing foreground and background
pixels that have similar colors is very difficult. Therefore,
several methods exist to enhance the information related
to a feature vector. For example, the SVM-based matting
method [11] uses not only a pixel’s RGB-color vector but
also RGB color vectors of its four neighboring pixels in
order to construct a 15-dimensional feature vector.

For our SVM classifier, we enhance the information re-
lated to each pixel by using its position, RGB color, and
RGB color gradient to construct its feature vector. For a
pixel pn, we define an 11-dimensional feature vector Xn

= {un, vn, Rn, Gn, Bn, dRxn, dGxn, dBxn, dRyn, dGyn,
dByn}, where un and vn are pixel coordinates; Rn, Gn,
and Bn are color values; and dRxn, dGxn, dBxn and
dRyn, dGyn, dByn are the gradients of the color values
in x and y directions, respectively.

3.2.2 Training of binary classifier using trimap

Our matting method uses a trimap to obtain an alpha
matte from an input color image. A trimap divides the en-
tire image region Ω into three subregions given by a user:
a definite foreground region Ωf , a definite background re-
gion Ωb, and an unknown region Ωu, as shown in Figure
1(b). A matting problem is solved in order to estimate a
foreground color F i, a background color Bi, and an al-
pha αi for each unknown pixel pi ∈ Ωu in order to satisfy
Eq.(1). Known pixels in Ωf and Ωb are used as clues for
the solution. A pixel pj ∈ Ωf has a foreground color F j
that is the same as its image color Ij and its alpha αj is
1. A pixel pk ∈ Ωb has a background color Bk that is the
same as its image color Ik and its alpha αk is 0.

Our SVM classifier uses an 11-dimensional feature vec-
tor Xn for a pixel pn ∈ Ω to determine whether it is a
foreground or background pixel. To train the classifier, a
simple idea is to use feature vectors of all known pixels
in Ωf and Ωb as training data. However, in most natu-
ral images, nearby pixels tend to have similar foreground
and background colors and alphas. Thus, we select a sub-
set Ω̃f ⊂ Ωf as foreground training data. For every pixel
pi ∈ Ωu, we define a selection window wi whose center is pi.
It has a small square shape (e.g., its size is 20×20 pixels).
If a definite foreground pixel pj ∈ Ωf is in wi, it is selected
as a foreground training pixel, that is, pj ∈ Ω̃f . In the

– 210 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

(a) Input image (b) Trimap (c) Binary classification (d) Final alpha matte

Figure 1: Examples obtained by our method. In (b), definite foreground regions are white, definite background regions are black,
and unknown regions are gray. In (c), (d), intensities mean alphas in [0, 1].

(a) (b)

Figure 2: Training data selected on a trimap. (a) shows a
trimap. (b) shows the regions of foreground and

background training data Ω̃f and Ω̃b along the un-
known region Ωu.

same manner, we select a subset Ω̃b ⊂ Ωb as background
training data. An example of selected subsets is shown in
Figure 2. In our binary classification, for a pixel pn ∈ Ω̃ =
Ω̃f ∪ Ω̃b ∪ Ωu, we give a label yn = 1 if pn is a foreground
pixel and yn = −1 if pn is a background pixel. Thus, we
use foreground training data {(Xj , yj)} = {(Xj , 1)} of
pixels pj ∈ Ω̃f and background training data {(Xk, yk)}
= {(Xk,−1)} of pixels pk ∈ Ω̃b.

After training is completed, the SVM classifier obtains
an SVM function D that returns a decision value D(Xn)
for a feature vector Xn of a pixel pn ∈ Ω̃. The function is
trained to return a value D(Xn) > 0 for a foreground pixel
and D(Xn) < 0 for a background pixel. When |D(Xn)| is
large, its classification has high reliability. If D(Xn) > 1
or D(Xn) 6 −1, pn is a foreground or background pixel,
respectively, having high reliability. If −1 < D(Xn) < 1,
its classification reliability is low. Examples of classifica-
tion are shown in Figure 1(c).

3.3 Initial alpha estimation

By means of the trained SVM classifier, initial alphas α0
i

of unknown pixels pi ∈ Ωu can be estimated.

All unknown pixels pi are first classified into foreground
and background pixels by the signs of the decision values
D(Xi). If a pixel pi is classified to the foreground, its
temporary alpha α̂0

i is set to 1. If pi is classified to the

background, α̂0
i is set to 0. In addition, α̂0

j of all pixels

pj ∈ Ω̃f are set to 1, and α̂0
k of all pixels pk ∈ Ω̃b are set

to 0.
A confidence value con0

i for each classified unknown
pixel pi is then evaluated as:

con0
i = e(di−1) · e(gi−1). (7)

The value di is calculated using the decision value Di =
D(Xi) as

di =

1 Di > avgf

Di/avgf 0 6 Di < avgf

Di/avgb avgb < Di < 0

1 Di 6 avgb

, (8)

avgf = 1

|Ω̃f |

∑
pj∈Ω̃f

D(Xj), (9)

avgb = 1

|Ω̃b|

∑
pk∈Ω̃b

D(Xk). (10)

The values |Ω̃f | and |Ω̃b| are the numbers of pixels in Ω̃f
and Ω̃b, respectively. The value gi is calculated using K
nearest neighbor pixels in Ω̃f ∪ Ω̃b to the pixel pi on the
feature vector space.

gi =

{
Kf/K Di > 0

Kb/K Di < 0
. (11)

Among the K nearest neighbor pixels, Kf is the number
of pixels pj ∈ Ω̃f , and Kb is the number of pixels pk ∈ Ω̃b.

Finally, using the temporary alphas α̂0
n of pixels pn ∈ Ω̃

and the confidence values con0
i of unknown pixels pi ∈ Ωu,

initial alphas α0
n are estimated by the CF method. The CF

method transforms binary temporary alphas α̂0
n ∈ {0, 1}

into real initial alphas α0
n ∈ [0, 1] as a solution for mini-

mizing the following optimization function.

α0 = argminα α
TLα+ λ(α− α̂0)TQ

(α− α̂0) + γ(α− α̂0)TP 0(α− α̂0).
(12)

Let N be the total number of pixels pn ∈ Ω̃. The vec-
tor α0 has N initial alphas α0

n, and the vector α̂0 has N

– 211 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

temporary alphas α̂0
n, n = 1, . . . , N . The N ×N matting

Laplacian matrix L is obtained from the input color image
given in Eq.(3). In the N ×N diagonal matrix Q, diago-
nal elements qnn are 1 for pn ∈ Ω̃f ∪ Ω̃b, and 0 for others.
In the N ×N diagonal matrix P 0, diagonal elements p0

nn

are con0
n for pn ∈ Ωu, and 0 for others. The parameters λ

and γ are used for weighting and normalizing; usually, λ
is large (e.g., 100), and γ is small (e.g., 0.1). The matrices
Q and P 0 constrain α0

n to remain α̂0
n. The initial alphas

α0
n of pn ∈ Ω̃f ∪ Ω̃b are strongly constrained by Q and λ.

The matrix P 0 constrains α0
n of pn ∈ Ωu strongly if con0

n

is large. As a solution to Eq.(12) for pn ∈ Ω̃f ∪ Ω̃b, α
0
n can

be neither 0 nor 1. However α̂0
n is either 0 or 1, and should

remain as such. Thus, we do not accept the solution and
instead set α0

n to α̂0
n. We use the solution of α0

n only for
pn ∈ Ωu.

3.4 Iterative refinement of alpha estimation

The alpha matte of the initial alphas α0
i often possesses

poor quality. Therefore, by starting with α0
i , our mat-

ting method refines the alphas αi of unknown pixels pi
iteratively by using the SVM classifier again until the re-
finement converges.

Let αti be the estimated alpha of an unknown pixel pi
after t iteration steps, t = 1, 2, . . . , tmax. In the t-th
iteration step, foreground and background colors F t−1

i and
Bt−1
i of unknown pixels pi are first estimated from the

latest alphas αt−1
i and the image colors Ii. We use the

reconstruction method proposed by the CF method [6] for
this foreground and background color estimation as Eq.(5),
although other methods can be used.

Next, we evaluate the confidence of the alphas αt−1
i by

evaluating the confidence of the estimated colors F t−1
i and

Bt−1
i instead. We construct the feature vectors of these

colors and classify them using the SVM classifier. Ideally,
these colors should be classified to foreground or back-
ground colors with high reliability. We consider that reli-
able foreground and background colors guarantee a reliable
alpha. We calculate the confidence value conti for each un-
known pixel pi as

conti = conf ti · conbti, (13)

where conf ti and conbti are the sub-confidence val-
ues for the colors F t−1

i and Bt−1
i . These are ob-

tained using the decision values Df t−1
i = D(X(F t−1

i))
and Dbt−1

i = D(X(Bt−1
i)) returned by the SVM classi-

fier, where X(F t−1
i) and X(Bt−1

i) are the feature vectors
of F t−1

i and Bt−1
i which include positions, RGB colors

and RGB color gradients.

conf ti =

1 Df t−1

i > 1
1−cos(πDft−1

i)

2
0 < Df t−1

i < 1

0 Df t−1
i 6 0

, (14)

conbti =

1 Dbt−1

i 6 −1
1−cos(πDbt−1

i)

2
−1 < Dbt−1

i < 0

0 Dbt−1
i > 0

(15)

Finally, we use the latest alphas αt−1
n of pixels pn ∈ Ω̃

and confidence values conti of unknown pixels pi ∈ Ωu to
estimate new alphas αtn by the CF method.

αt = argminα α
TLα+ λ(α−αt−1)TQ

(α−αt−1) + γ(α−αt−1)TP t(α−αt−1).
(16)

The matrices L and Q and the parameters λ and γ are
the same as in Eq.(12). The vector αt has N alphas αtn,
and the vector αt−1 has N alphas αt−1

n , n = 1, . . . , N .
In the N ×N diagonal matrix P t, diagonal elements ptnn
are contn for pn ∈ Ωu, and 0 for others. The matrix P t

constrains αtn to remain αt−1
n by contn for pn ∈ Ωu. This

constraint is stronger as contn becomes larger. In the same
manner as described in Section 3.3, we use the solution of
Eq.(16) of αtn only for pn ∈ Ωu, and retain αtn as 0 or 1 for
pn ∈ Ω̃f ∪ Ω̃b.

As the iteration proceeds, the quality of the estimated
alpha matte improves. The iteration stops when the differ-
ence between αt−1 and αt is smaller than the predefined
threshold.

4 Experimental results

The algorithm of this study was implemented using MAT-
LAB and executed with an Intel i7 3.4GHz CPU and 16GB
memory. In addition, an SVM library, LIBSVM, was used,
and the parameters of the svmtrain function were given the
default settings introduced by [18].

Figure 1(c), Figure 3(c) and Figure 4(c) show examples
of the binary classification by the SVM. These examples
reveal the fundamental excellent ability of the SVM. All
unknown pixels are classified into either foreground pixels
or background pixels reasonably. These binary classifica-
tion images seem to be rough approximations of accurate
alpha mattes.

Figure 3 and Figure 4 show iterative refinement pro-
cesses of alpha mattes obtained by our method. The input
images, “Troll” and “GT25”, are available on a well-known
matting evaluation website [21]. In each figure, the alpha
matte is gradually refined as the iteration proceeds, and
the refinement converges. These results show that the it-
erative refinement mechanism based on the SVM in our
method works well.

In the following, we compare our method with several
well-known methods: CF matting [6], learning based dig-
ital matting (LB) [10], KNN matting [14], SVR matting
[12], LNSP matting [15], color clustering matting (CCM)
[16], and comprehensive sampling (CS) matting [17]. In
order to evaluate resulting alpha mattes, we used four
types of errors: Sum of Absolute Differences (SAD), Mean
Squared Error (MSE), Gradient error (Grad.), and Con-
nectivity error (Con.), which are discussed in [22] and used
on the matting website [21]. Among these methods, the
SVR, LNSP, CCM, and CS are current high-ranking meth-
ods on the matting website and on average provide high-
quality results for the four error types. The LB and KNN
are also well-known excellent methods, and their source
codes are available.

– 212 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

(a) Input (b) Trimap (c) Iteration: 0

(d) Iteration: 1 (e) Iteration: 2 (f) Iteration: 4

(g) Iteration: 8 (h) Iteration: 16 (i) Iteration: 20

Figure 3: Iterative refinement of “Troll”. (c) is the classifica-
tion result and (d)–(i) are the refinement results.

(a) Input (b) Trimap (c) Iteration: 0

(d) Iteration: 1 (e) Iteration: 2

Figure 4: Iterative refinement of “GT25”. (c) is the classifica-
tion result and (d)–(e) are the refinement results.

The matting website [21] provides useful benchmark in-
put images, including “Troll” and “GT25” in Figures 3
and 4. Among these images, we used the images in the
“GT dataset” to compare our method with the CF, LB,
and KNN methods, whose source codes are available. Fig-
ures 5, 6 and 7 show the graphs for the comparisons of
the SAD, MSE, and Grad. values respectively obtained
by applying the four methods to the 27 input images in
the GT dataset. In each graph, the horizontal axis indi-
cates the index numbers of the images, and the vertical
axis indicates error values. For each input image, the er-
ror values are normalized so that the error value by the
CF method is one. Judging from the graphs, the CF and
LB methods tend to provide similar error values in all the
three error types. Compared to the CF and LB meth-
ods, the KNN method and our method tend to have large
changes in error values. The KNN method tends to pro-
vide larger error values than the other methods while it
provides small error values for some input images. As a
whole, our method tends to provide the smallest error val-
ues among these methods. This means that our method
has an ability to generate high-quality alpha mattes while

it generates poor-quality alpha mattes for some input im-
ages.

Figures 8, 9, 10 and 11 show the resulting alpha mattes
obtained by applying the CF, LB, and KNN methods and
our method to several input images selected from the 27
images. The ground truth images in the figures are pro-
vided in the matting website [21]. Tables 1, 2 and 3 show
the SAD, MSE, and Grad. values of the alpha mattes re-
spectively. Our method achieves the smallest error values
in all the three error types for the 8 input images used in
Figures 8, 9 and 10. This means that, from the viewpoint
of error values, our method generates the highest-quality
alpha mattes for these input images. On the other hand,
our method provides large error values for the 3 input im-
ages used in Figure 11. This means that our method gen-
erates poor-quality alpha mattes.

The “GT04” image in Figure 8 has a part with simi-
lar foreground and background colors given by green hair
and green grass. The KNN method and our method suc-
cessfully generate visually reasonable alpha mattes on the
part, that is, the region including the hair of the two dolls
in the middle of the zoomed images, while the CF and LB
methods fail. The “GT11” image in Figure 9 also has a
part with similar foreground and background colors in the
zoomed region. Judging from the error values, in Figure
9 as well as Figure 8, our method achieves the best result
although it is difficult to distinguish the results of the four
methods visually. Figure 10 shows other cases in which the
results of our method are better than those of the other
methods from the viewpoint of error values. In particu-
lar, we find visually that our method works well for the
“GT02” and “GT26” images having foreground objects
with many small holes while the CF and LB methods fail
to treat them. We consider that, in our method, the SVM
succeeded in classifying foreground and background col-
ors correctly even for the cases in which there were many
small holes as well as the cases in which foreground and
background colors were similar.

On the other hand, Figure 11 shows some cases in which
our method generates poor-quality results from the view-
point of error values although it is difficult to visually
distinguish their qualities from those by the other meth-
ods. In order to easily compare the qualities achieved
by the four methods, we show two kinds of error maps
for the “GT08” image in Figure 12. The top error maps
show, for each pixel, the difference difx between the al-
pha αx obtained by the method x, which is CF, LB,
KNN, or Ours, and the alpha αgt of the ground truth:
difx = αx − αgt. The red pixels mean difx > 0, the blue
pixels mean difx < 0, and the black pixels mean difx = 0.
A brighter red or blue color means a larger absolute
difference. The bottom error maps show the difference
difgx between the gradients of the alphas αx and αgt:
difgx = gradαx − gradαgt. The red, blue, and black pix-
els have similar meanings to the top error maps. We con-
sider that, in these cases, it was difficult for the SVM to
appropriately classify foreground objects (e.g., long and
thin hair, and fine fur) and backgrounds because of the
lack of training data to adequately learn their properties.

– 213 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0.5

1

1.5

2

2.5

3
CF

LB

KNN

Ours

Figure 5: Comparison of SAD errors for GT dataset images. The horizontal axis indicates the index numbers of the images. The
vertical axis indicates SADx/SADCF , x ∈ {CF,LB,KNN,Ours}.

Table 1: SAD errors for GT dataset images.

GT01 GT02 GT04 GT05 GT07 GT08 GT11 GT17 GT18 GT23 GT26

CF 1131.2 4308.2 12095.5 1262.5 2150.7 11453.6 3630.5 1782.3 2188.1 1608.7 18056.2
LB 1130.1 4273.7 11513.5 1217.6 2122.9 11411.2 3546.8 1787.9 2215.3 1570.7 17881.2

KNN 710.1 1536.8 12490.4 1397.7 2584.3 17922.2 4716.5 5429.3 1899.6 2856.1 13971.4
Ours 633.5 1197.7 9661.8 836.4 1603.0 15212.8 2986.3 4476.3 1324.1 2593.8 11955.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0

1

2

3

4

5

6

7

8

9

10

11

CF

LB

KNN

Ours

Figure 6: Comparison of MSE errors for GT dataset images. The horizontal axis indicates the index numbers of the images. The
vertical axis indicates MSEx/MSECF , x ∈ {CF,LB,KNN,Ours}.

Table 2: MSE errors for GT dataset images.

GT01 GT02 GT04 GT05 GT07 GT08 GT11 GT17 GT18 GT23 GT26

CF 0.00054 0.0071 0.0091 0.0012 0.00087 0.0051 0.0016 0.0004 0.001 0.00025 0.0174
LB 0.00053 0.007 0.0085 0.0012 0.00085 0.005 0.0015 0.00041 0.0011 0.00025 0.0172

KNN 0.00025 0.00084 0.0052 0.00098 0.0011 0.011 0.0024 0.0043 0.00083 0.00084 0.0098
Ours 0.00017 0.00046 0.0032 0.00027 0.00031 0.0077 0.0011 0.0025 0.00038 0.00047 0.0084

– 214 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0

1

2

3

4

5

6

7

8

CF

LB

KNN

Ours

Figure 7: Comparison of Gradient errors for GT dataset images. The horizontal axis indicates the index numbers of the images.
The vertical axis indicates Gradx/GradCF , x ∈ {CF,LB,KNN,Ours}.

Table 3: Gradient errors for GT dataset images.

GT01 GT02 GT04 GT05 GT07 GT08 GT11 GT17 GT18 GT23 GT26

CF 1776.6 21005 9610.8 2554.6 1868.8 5039.9 5046 764.1 2711.1 671.6 48368
LB 1754.7 20733 8925.3 2438.1 1834.3 4945.6 4744 764.2 2732.5 641.5 47720

KNN 521.9 2287.1 6686 2795.5 2010.7 11880 4281.6 5944.9 2304.3 3139.3 17682
Ours 476.7 1476.8 4680 657.5 756.7 5483.1 3401.9 2131.2 1048.3 1019.5 16564

(a) Input and trimap (b) CF

(c) LB (d) KNN

(e) Ours (f) Ground truth

Figure 8: Alpha mattes for “GT04” image.

(a) Input and trimap (b) CF

(c) LB (d) KNN

(e) Ours (f) Ground truth

Figure 9: Alpha mattes for “GT11” image.

– 215 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

(a) Input (b) Trimap (c) CF (d) LB (e) KNN (f) Ours (g) Ground Truth

Figure 10: Alpha mattes for GT dataset images (from the top, GT01, GT02, GT05, GT07, GT18, and GT26) with small errors
by our method.

(a) Input (b) Trimap (c) CF (d) LB (e) KNN (f) Ours (g) Ground Truth

Figure 11: Alpha mattes for GT dataset images (from the top, GT08, GT17, and GT23) with large errors by our method.

– 216 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

(a) CF (b) LB (c) KNN (d) Ours

Figure 12: Error maps for “GT08” image. The top maps show, for each pixel, the difference between alphas by the respective
methods and the ground truth. The bottom maps show the difference between the gradients of alphas.

Figure 13 and Table 4 show the resulting alpha mat-
tes and error values obtained by applying not only the
CF, LB, and KNN methods and our method but also the
SVR, LNSP, CCM, and CS methods to the “Troll” im-
age in Figure 3. The alpha mattes and error values by
the methods except for our method are available on the
matting website [21]. On the website, the “Troll” image is
provided as a typical image with “Strongly Transparent”
objects. In addition, the hair part in front of the bridge
is so difficult to treat to obtain its accurate alpha matte
because of not only the fine detailed hair but also the simi-
lar foreground and background colors. As shown in Figure
13, no method achieves a high-quality result. The poor
qualities of the resulting alpha mattes depend on meth-
ods. The results of some methods have artifacts on the
hair part caused by the outlines of the bridge. The re-
sults of some methods including ours have larger alphas
uniformly on the hair part. However, judging from the
error values in Table 4, our method competes even with
the current high-ranking methods (SVR, LNSP, CCM, and
CS). In the same way as Figure 11, we consider that the
poor-quality result by our method was caused mainly by
the lack of training data. Figure 14 shows an alpha matte
obtained by applying our method to the “Troll” image by
using a trimap different from the trimap used in Figure 13.
While the trimap in Figure 13 is provided in the matting
website [21], the trimap in Figure 14 was created by us so
as to give additional definite background regions inside the
unknown region of the trimap in Figure 13. By comparing
Figure 14(b) with Figure 13(i), we find that an improved
alpha matte was obtained by the new trimap that provided
more clues, which were used as more useful training data
for the SVM.

Table 4: Errors for “Troll” image.

SAD MSE Grad. Con.

CF 12.7 0.5 0.3 0.8
LB 16.0 0.8 0.3 0.8

KNN 16.2 0.8 0.3 3.4
SVR 18.7 1.1 0.3 1.2

LNSP 12.2 0.5 0.2 0.8
CCM 13.8 0.5 0.2 0.7
CS 11.2 0.4 0.2 1.0

Ours 11.9 0.5 0.2 0.7

(a) Trimap (b) CF (c) LB

(d) KNN (e) SVR (f) LNSP

(g) CCM (h) CS (i) Ours

Figure 13: Alpha mattes for “Troll” image.

– 217 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

(a) Trimap (b) Alpha matte

Figure 14: An alpha matte for “Troll” image by our method
using a different trimap.

From the above experiments, we find that our method
generates high-quality alpha mattes particularly for input
images having similar foreground and background colors
and objects with small holes. For several input images, our
method performs more effectively than other methods and
competes even with high-ranking methods. Our method
relies on the ability of a binary classifier. Thus, the quality
of a resulting alpha matte depends on the performance
of the classifier. When the learning of the classifier by
training data is not enough, the quality of the alpha matte
tends to become poor. The effective way of the learning
of the classifier needs to be explored in future.

5 Conclusion

In this study, we proposed a learning-based matting
method. In our method, an image matting problem is first
treated as a binary classification problem, and a binary
alpha matte is obtained through a binary classifier. The
binary alpha matte is then iteratively refined to a high-
quality alpha matte by repeat use of the classifier. Our
method was performed better than other methods in ex-
periments for several input images while it did not work
well for some input images.

Although we used an SVM classifier and the CF method,
an important merit of our method is that it provides a
general mechanism to refine an alpha matte by combining
various binary classifiers and matting methods. This rep-
resents a promising ability to achieve better results than
those currently obtained, and we plan to investigate other
combinations. Besides, an effective way of the learning of
a classifier to classify foreground and background colors
correctly needs to be explored. In addition, we plan to ap-
ply our method to high-resolution images efficiently. One
idea is to use an effective trimap segmentation method.

References

[1] Alvy Ray Smith and James F. Blinn. Blue screen
matting. Association for Computing Machinery, Inc.,
pages 259–269, 1996.

[2] J. Wang and M. Cohen. An iterative optimization
approach for unified image segmentation and matting.
Proc. 10th IEEE Int’l Conf. Computer Vision, 2005.

[3] Jue Wang and Michael F. Cohen. Image and video
matting: A survey. Found. Trends. Comput. Graph.
Vis., 3:97–175, 2007.

[4] Yung-Yu Chuang, Brian Curless, David H. Salesin,
and Richard Szeliski. A bayesian approach to digital
matting. Proceedings of IEEE CVPR 2001, 2:264–
271, 2001.

[5] Jian Sun, Jiaya Jia, Chi-Keung Tangand, and Heung-
Yeung Shum. Poisson matting. ACM Trans. Graph.,
23:315–321, 2004.

[6] A. Levin, D. Lischinski, and Y. Weiss. A closed form
solution to natural image matting. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions,
30:228–242, 2008.

[7] Jue Wang and Michael F. Cohen. Optimized color
sampling for robust matting. Computer Vision and
Pattern Recognition, pages 1–8, 2007.

[8] Eduardo S. L. Gastal and Manuel M. Oliveira. Shared
sampling for real-time alpha matting. Computer
Graphics Forum, 29:575–584, 2010.

[9] Kaiming He, Jian Sun, and Xiaoou Tang. Fast mat-
ting using large kernel matting laplacian matrices.
Computer Vision and Pattern Recognition (CVPR),
pages 2165 – 2172, 2010.

[10] Ye Zheng and Kambhamettu C. Learning based dig-
ital matting. Computer Vision, 2009 IEEE 12th In-
ternational Conference, pages 889–896, 2009.

[11] Tadaaki Hosaka, Takumi Kobayashi, and Nobuyuki
Otsu. Image matting based on local color discrimina-
tion by svm. Pattern Recognition Letters, 30:1253 –
1263, 2009.

[12] Z. Zhang, Q. Zhu, and Y. Xie. Learning based alpha
matting using support vector regression. ICIP, 2012.

[13] Kaiming He, Christoph Rhemann, Carsten Rother,
Xiaoou Tang, and Jian Sun. A global sampling
method for alpha matting. Computer Vision and Pat-
tern Recognition (CVPR), pages 2049 – 2056, 2011.

[14] Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn
matting. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 869–876, 2012.

[15] X. Chen, D. Zou, and P. Tan. Image matting with
local and nonlocal smooth priors. CVPR, 2013.

[16] Y. Shi, O.C. Au, J. Pang, K. Tang, W. Sun, H. Zhang,
W. Zhu, and L. Jia. Color clustering matting. ICME,
2013.

[17] E.Shahrian, D.Rajan, B.Price, and S.Cohen. Improv-
ing image matting using comprehensive sampling sets.
CVPR, 2013.

[18] Chih wei Hsu, Chih chung Chang, and Chih jen Lin. A
practical guide to support vector classification. IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2010.

– 218 –

The Journal of the Society for Art and Science, Vol.14, No.5, pp. 207–219

[19] S.Keerthi and C. j. Lin. Asymptotic behaviors of sup-
port vector machines with gaussian kernel. Neural
Computation, 15:1667–1689, 2003.

[20] C. Chang and C. Lin. Libsvm – a
library for support vector machines.
http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

[21] alpha matting evaluation website.
http://www.alphamatting.com/index.html.

[22] Christoph Rhemann, Carsten Rother, Jue Wang,
Margrit Gelautz, Pushmeet Kohli, and Pamela Rott.
A perceptually motivated online benchmark for im-
age matting. Conference on Computer Vision and
Pattern Recognition (CVPR), 2009.

Zixiang Lu

Zixiang Lu is a master course student in Design and Media
Technology at the Graduate School of Engineering, Iwate
University from 2014. He received his bachelor degree from
North West Agriculture and Forestry University in 2013.
His research interest includes image processing, computer
vision and data mining.

Tadahiro Fujimoto

Tadahiro Fujimoto is currently an associate professor in
the Department of Computer and Information Sciences at
Iwate University. His research interests include computer
graphics and computer vision. He received a BE in electri-
cal engineering, and an ME and Ph.D. in computer science
from Keio University in 1990, 1992, and 2000, respectively.
He worked at Mitsubishi Research Institute from 1992 to
1995. He was a research associate in the Department of
Computer and Information Sciences at Iwate University
from 1999 to 2002, and a lecturer from 2002 to 2005. He
is a member of SAS Japan, IEICE Japan, IPS of Japan,
IEEE, and ACM.

– 219 –

